只要按照相应制造商的所有相关说明使用,CENTRIFUGE 转子在其他制造商的离心机上运行是完全安全的。由于重量较轻,FIBER Lite ® CENTRIFUGE 转子实际上会减少离心机电机驱动器的磨损。FIBER Lite ® CENTRIFUGE 转子的故障模式与金属转子大不相同。如果发生全面故障和中断,FIBER Lite ® CENTRIFUGE 转子对离心机造成的损害将小于金属转子。但是,大型或高能转子的全面中断仍可能导致离心机损坏和样品丢失。确保遵循本手册以及离心机、瓶子和试管制造商以及样品混合物或试剂供应商提供的其他文件中的说明。每次运行都正确遵循所有操作程序。
生成风能:风发电设施通过捕获风能,用两到三个螺旋桨像转子上的刀片一样运行,以发电。随着风吹,刀片下风的低压空气形式的口袋。此低压空气然后将刀片拉向刀片,形成升降机并转动转子。升降机的力比阻力或风的力强大。升降机和阻力的组合使转子旋转,从而使轴旋转发电机以产生电力。
2 硬件分析 风扇是一种空气流动装置,利用由电动机通过电子或机械命令驱动的旋转叶片或叶轮 [4]。根据风扇的定义,旋转叶片和电动机是帮助风扇实现其所需功能(即空气流动)的核心部件。一般而言,风扇所包含的部件种类可能因供应商和客户的要求而有所不同。例如,风扇中可以使用有刷电机代替无刷电机,以降低成本,尽管可能会产生金属颗粒和由于金属刷退化而产生的电火花等副作用。但是,无论具体设计如何,风扇中核心部件的功能都不会改变。选择用于消费电子应用的 BLDC 风扇进行硬件分析。图 1 显示了风扇的两个核心元件;即电动机和叶片。在图 2 中,电动机被拆解成两部分:风扇外壳中的定子和转子。叶片直接安装在电动机的转子上。转子中的条形永磁体具有足够的柔韧性,可以装入转子的壳体中,并与转子产生的电磁力相互作用
和锥化都指叶片绕铰链的运动。“拍打”是指在主旋翼轮毂旋转一圈期间,单个叶片绕铰链上下运动。锥化是升力和旋转离心力共同作用赋予两个叶片的向上运动。锥角是转子叶片纵轴(假设没有叶片弯曲)与转子尖端路径所描述的平面(转子盘旋转平面)之间的角度。
BLDC 电机使用电子换向来控制流过绕组的电流。BLDC 电机在转子上使用永磁体。BLDC 电机包含转子位置传感器电子元件,因此绕组的电源输入波形与正确的转子位置一致。由于电刷中没有功率损耗,因此电机效率得到提高。在 BLDC 电机中,定子缠绕有以多相配置连接的电磁线圈,提供旋转磁场,电枢由带有永磁极的软铁芯组成。传感设备定义转子位置。换向逻辑和开关电子元件将转子位置信息转换为定子相的正确激励。传感设备包括霍尔效应传感器、绝对编码器、光学编码器和解析器。电子控制器可以单独使用,也可以与电机封装在一起。
A.“ T1,T2和T3”电动机导线通过滑动环和刷子连接到转子绕组,“ M1,M2和M3”电动导线直接连接到定子绕组。B.“ T1,T2和T3”电动机导线直接连接到转子绕组,“ M1,M2和M3”电动导线通过滑环和刷子连接到定子绕组。C.“ M1,M2和M3”电动机导线通过滑环和刷子连接到转子绕组,“ T1,T2和T3”电动导线直接连接到定子绕组。D.“ M1,M2和M3”电动机导线直接连接到转子绕组,“ T1,T2和T3”电动机导线通过滑环和刷子连接到定子绕组。正确答案:C
注释 13 挤压膜阻尼器:操作、模型和技术问题 挤压膜轴承阻尼器是润滑元件,可在机械系统中提供粘性阻尼。旋转机械中的挤压膜阻尼器提供结构隔离,降低转子对不平衡的响应幅度,并且在某些情况下,有助于抑制转子动力学不稳定性。背景 转子动力学中最常见的问题是过高的稳态同步振动水平和次同步转子不稳定性。第一个问题可以通过改善平衡来减少,或者通过对转子轴承系统进行修改以使系统临界速度超出工作范围,或者通过引入外部阻尼来限制临界速度下的峰值幅度。可以通过消除不稳定机制、尽可能提高转子轴承系统的固有频率或引入阻尼来增加不稳定的起始转子速度,从而避免次同步转子不稳定性 [Vance 1988, Childs 1993]。轻型高性能发动机表现出灵活性增加的趋势,导致对不平衡的高度敏感性,振动水平高,可靠性降低。挤压膜阻尼器 (SFD) 是高速涡轮机械的重要组成部分,因为它们具有耗散振动能量和隔离结构部件的独特优势,以及改善固有不稳定转子轴承系统的动态稳定性特性的能力。SFD 主要用于飞机喷气发动机,为本身几乎没有或没有阻尼的滚动轴承提供粘性阻尼。另一个重要应用与高性能压缩机组有关,其中 SFD 与可倾瓦轴承串联安装,以降低(软化)轴承支撑刚度,同时提供额外的阻尼作为安全机制,以防止转子动力学不稳定。此外,在齿轮压缩机中,SFD 有助于减少和隔离通过大齿轮传输的多频激励。[San Andrés,2002]。Zeidan 等人。[1996] 介绍了喷气发动机中 SFD 的历史,并详细介绍了 SFD 在商用涡轮机械中成功运行的设计实践。Adilleta 和 Della Pietra [2002] 对 SFD 的相关分析和实验工作进行了全面回顾。San Andrés 和 Delgado [2007] 讨论了最近的 SFD 实验研究,并提出了一种不受空气夹带影响的机械密封 SFD。尽管有许多成功的应用,但业界通常认识到 SFD 的设计基于过于简单的预测模型,这些模型要么未能纳入影响阻尼器动态力性能的独特特征(结构和流体),要么只是忽略了这些特征。实际阻尼器性能可能从不稳定到不起作用,具体取决于操作条件。润滑剂空化或空气夹带等问题是人们最关心的问题 [San Andrés 和 Diaz,
注释 13 挤压膜阻尼器:运行、模型和技术问题 挤压膜轴承阻尼器是润滑元件,可在机械系统中提供粘性阻尼。旋转机械中的挤压膜阻尼器可提供结构隔离、降低转子对不平衡的响应幅度,并且在某些情况下,有助于抑制转子动力学不稳定性。背景 转子动力学中最常见的问题是过高的稳态同步振动水平和次同步转子不稳定性。可通过改善平衡、对转子轴承系统进行修改以使系统临界转速超出工作范围或引入外部阻尼来限制在穿越临界转速时的峰值幅度,从而减轻第一个问题。可以通过消除不稳定机制、尽可能提高转子轴承系统的固有频率或引入阻尼来提高不稳定的起始转子速度,从而避免次同步转子不稳定 [Vance 1988, Childs 1993]。轻型高性能发动机表现出灵活性增加的趋势,导致对不平衡的高度敏感性,振动水平高,可靠性降低。挤压油膜阻尼器 (SFD) 是高速涡轮机械的重要组成部分,因为它们具有耗散振动能量和隔离结构部件的独特优势,以及改善固有不稳定转子轴承系统的动态稳定性特性的能力。SFD 主要用于飞机喷气发动机,为本身几乎没有或没有阻尼的滚动轴承提供粘性阻尼。另一个重要应用与高性能压缩机组有关,其中 SFD 与可倾瓦轴承串联安装,以降低(软化)轴承支撑刚度,同时提供额外的阻尼作为安全机制,以防止转子动力学不稳定。此外,在齿轮压缩机中,SFD 有助于减少和隔离通过大齿轮传输的多频激励。[San Andrés,2002]。Zeidan 等人 [1996] 介绍了 SFD 在喷气发动机中的历史,并详细介绍了 SFD 在商用涡轮机械中成功运行的设计实践。Adilleta 和 Della Pietra [2002] 全面回顾了对 SFD 进行的相关分析和实验工作。San Andrés 和 Delgado [2007] 讨论了最近的 SFD 实验研究,并展示了一种不受空气夹带的机械密封 SFD。尽管有许多成功的应用,但业界通常认识到,SFD 的设计基于过于简单的预测模型,这些模型要么未能纳入影响阻尼器动态力性能的独特特征(结构和流体),要么只是忽略了这些特征。根据操作条件,实际阻尼器性能可能从不稳定到不起作用。润滑剂空化或空气夹带等问题是根本问题 [San Andrés 和 Diaz,