● Solely responsible for the development, maintenance and testing of multiple mobile applications deployed to the App Store and Google Play with 5000+ users ● Responsible for migrating an extensive native Android codebase (Java) to a cross-platform implementation ● Integration and development of web-based systems and REST APIs including liaising with web development teams ● Communicating with end-users to develop and analyse stakeholder requirements ● Maintaining government-mandated数字系统中的合规性
我们提出了一种方案,利用数值“精确”分层运动方程 (HEOM) 中的准静态亥姆霍兹能量,评估在时间相关外力作用下与热浴耦合的系统的热力学变量。我们计算了不同温度下与非马尔可夫热浴强耦合的自旋系统产生的熵。我们表明,当外部扰动的变化足够缓慢时,系统总会达到热平衡。因此,我们基于 HEOM 计算了等温过程的玻尔兹曼熵和冯诺依曼熵,以及准静态平衡系统的各种热力学变量,例如内部能量、热量和功的变化。我们发现,尽管玻尔兹曼和冯诺依曼情况下的系统熵作为系统-浴耦合强度的函数的特征相似,但总熵产生的特征完全不同。在玻尔兹曼情况下,总熵产生总是正的,而在冯·诺依曼情况下,如果我们选择整个系统的热平衡状态(未分解的热平衡状态)作为初始状态,则总熵产生为负。这是因为冯·诺依曼情况下的总熵产生没有适当考虑系统-浴相互作用的熵贡献。因此,必须使用玻尔兹曼熵来研究完全量子状态下的熵产生。最后,我们检查了 Jarzynski 等式的适用性。
考夫曼的研究领域是代数拓扑,尤其是低维拓扑和结理论,以及它们与数学物理和自然科学的关系。20 世纪 70 年代早期,他对高维结和高维流形上的奇异结构的研究使用了分支覆盖构造的概括,对于通过 Brieskorn 簇和代数奇点链表达的这些结构的拓扑理解至关重要。这些非标准可微结构的构造至今仍是个谜,并且肯定与基础物理学有关——就像 Brieskorn 研究的流形一样。考夫曼于 1980 年发现了亚历山大-康威多项式的状态求和模型,并于 1985 年发现了琼斯多项式的括号多项式状态模型。这些状态模型构成了分区函数在结不变量构造中的首次直接应用。在括号多项式模型中,考夫曼表明,这种状态总和是统计力学中 Potts 模型的一个版本 - 转换为结点图。他发现了原始琼斯多项式的二变量泛化,称为半定向或考夫曼多项式。自从这些发现以来,他的工作主要针对结点和链接的新不变量的结构。括号模型使考夫曼、Murasugi 和(独立)Thistlethwaite 证明了 Tait 猜想,即减少交替链接投影的交叉数的拓扑不变性。他在虚拟结点理论方面的研究开辟了结点理论的新领域,并发现了许多结点和链接的新不变量。特别是,考夫曼括号中的状态结构被米哈伊尔·霍瓦诺夫 (Mikhail Khovanov) 用于创建结点的霍瓦诺夫同源理论,产生了新的和微妙的不变量。 Dye、Kauffman 和 Kaestner 利用 Manturov 的构造将 Khovanov 同源性推广到虚拟结点理论,并以此方式完成了 Rasmussen 不变量的新版本。这导致了正虚拟结点的 4 球属的确定,而 Kauffman 应用此结果获得了
等级 步骤 1 步骤 2 步骤 3 步骤 4 步骤 5 步骤 6 步骤 7 步骤 8 步骤 9 步骤 10 C7 18.91 19.51 20.12 20.75 21.40 22.07 22.77 23.48 24.22 24.98 步骤 11 步骤 12 步骤 13 步骤 14 步骤 15 步骤 16 步骤 17 步骤 18 步骤 19 步骤 20 25.77 26.57 27.41 28.27 29.16 30.07 31.02 31.99 33.00 34.03 职位 行政助理/办公室经理 EMA 专家 项目协调员 职称 助理图书馆馆长 工程助理 道路施工队队长 (CDL) 助理系统操作员 政府税务分析师 固体废物官员 桥梁建设技术员 (CDL)库存/采购代理 高级估价师 桥梁建设技术员/助理主管 (CDL) 营销/活动协调员 高级 GIS 测绘员 区域管理协调员 机械师-车库 高级个人道具估价师 选举协调员 办公室和零件采购经理
Jacob 被 Chambers Canada、The Canadian Legal Lexpert Directory、Best Lawyers in Canada 和 Who's Who Legal 评为能源:电力领域的领先律师,他经常代表业主、贷款人、承购商和其他利益相关者处理加拿大各地可再生能源、电池存储、碳捕获、生物燃料、氢能、电动汽车和其他电力部门和能源转型项目。他曾担任加拿大太阳能产业协会董事。
美国,2020 年 1 月。网站和博客:https://hydrogen.wsu.edu/ 2022 年:用户:33,420;页面浏览量:58,755。2021 年:用户:36,393;页面浏览量:67,363。2020 年:用户:26,457;页面浏览量:56,214。2019 年:用户:18,876;页面浏览量:34,039。2018 年:用户:19,447;页面浏览量:33,465。2017 年:用户:15,701;页面浏览量:31,879。2016 年:用户:N/A;页面浏览量:24,501。2015 年:用户:N/A;页面浏览量:2,554。博士后学生:Ian Richardson,2018 年 1 月至 2021 年 12 月;由华盛顿研究基金会资助。Patrick Adam,2017 年 9 月至 2021 年 6 月;由华盛顿州立大学教务长办公室资助。富布赖特和访问学者:Archie West,2023 年 9 月至 2023 年 12 月;由空中客车公司资助,作为访问技术体验。Liam Turner,2022 年 5 月至 2023 年 5 月;由富布赖特基金会资助,来自莫纳什大学访问
拉曼光谱。拉曼光谱中 G 和 D 带的位置和强度可让材料科学家在收集 XPS 数据的同时了解 SWCNT 的直径、碳层数和纯度,从而确保科学家能够通过这两种技术测量相同化学状态的同一样品。