流体饱和度的定量评估对于页岩油的形成评估很重要。但是,由于成岩成岩矿物质和孔类型的复杂性,目前尚无有效的方法来识别流体发生状态并定量评估湖泊页岩油的流体饱和度。在本文中,提出了一种基于核磁共振(NMR),X射线衍射(XRD)和扫描电子显微镜(SEM)测量的方法来定量评估流体饱和度的方法,用于对Fengcheng地层的页岩样品,Mahu Sag,Mahu Sag,Mahu Sag,中国Jungag。这些研究表明,页岩油岩石主要含有石英,长石,白云岩,方解石和粘土矿物质,它们都会产生有机和无机孔。流体主要以沥青,粘土结合的水,结合水,结合油和可移动油的形式出现。根据这些实验的发现,提出了混合的岩石指数(MI)和泥指数(SI)将页岩油地层分为三种类型,包括沙子,白云岩页岩和泥岩。a t 1 -t 2 2d 2d NMR流体的出现状态表征图被建立,以通过MI,SI和NMR特性识别不同的流体。此外,提出了一种方法来定量计算不同地层中页岩油的结合和可移动流体的系数。最后,提出的方法被成功地应用于河谷形成中的湖间页岩油中,以鉴定流体的发生状态并定量评估流体饱和度。
摘要:模拟分子的响应特性对于解释实验光谱和加速材料设计至关重要。然而,对于传统计算机上的电子结构方法来说,这仍然是一个长期存在的计算挑战。虽然量子计算机有望在长期内更有效地解决这一问题,但现有的需要深度量子电路的量子算法对于近期的噪声量子处理器来说是不可行的。在此,我们引入了一种用于响应特性的实用变分量子响应 (VQR) 算法,从而无需深度量子电路。利用该算法,我们报告了在超导量子处理器上首次模拟分子的线性响应特性,包括动态极化率和吸收光谱。我们的结果表明,使用该算法结合合适的误差缓解技术,一大类重要的动态特性,如格林函数,在近期的量子硬件范围内。
图 2 显示了支持各种分析要求的建模活动的基本流程。所有模型均从适当的数据库发展而来。为了支持了解车辆响应特性和快速设计有效可实现控制律所需的许多参数分析,需要低阶结构模型。空气动力学公式需要反映可用的风洞测试数据,特别是关于俯仰稳定性的数据,因为飞翼设计在俯仰方面本质上是边缘稳定或不稳定的。这些模型还需要能够包括执行系统和传感器的代表性模型。MSC/NASTRAN 是进行建模活动和图 3 半跨度有限元模型的主要工具
数字信号处理 4114 不会尝试使用不精确的模拟湿度信号。其传感器组件具有精确的温度和湿度响应特性。4114 中的微处理器直接以数字格式处理来自 Ultra-D � 传感器的电容信号。然后,它从模拟温度变送器部分通过 12 位 A/D 转换器获取温度值。它检查内部特性数据,并通过 12 位 D/A 转换器更新露点 4-20 mA 信号,所有这些操作都在不到三分之一秒的时间内完成。数字方案还允许使用其他输出单位,例如湿度比(磅/磅)、湿球温度和相对湿度。霍尼韦尔根据精确的参考标准对每个单元进行全面校准,并随每个单元附上可追溯到 NIST 的校准证书。
摘要:纳米生物聚合物(如壳聚糖、明胶、透明质酸、聚谷氨酸、脂质、肽、外泌体等)输送系统有望解决将 siRNA 药物输送至实体肿瘤(包括乳腺癌细胞)时遇到的生理困难。纳米生物聚合物具有良好的刺激响应特性,因此可用于改进 siRNA 输送平台,以输送至无法用药的 MDR 转移性癌细胞。这些生物聚合物 siRNA 药物可以保护药物免受 pH 降解、细胞外运输和非靶向结合位点的影响,因此适合以控释方式进行药物内化。本综述将讨论多种生物聚合物化合物(如 siRNA 药物输送系统)在 MDR 实体肿瘤(包括乳腺癌)中的应用。
本文描述的飞行员模型的基础是 Hess [5] 提出的结构飞行员模型。介绍了一种利用测量的飞行员频率响应特性来提高所提出的结构飞行员模型准确性的方法。描述了使用 MAI 的飞行员-车辆实验室 (PVL) 工作站进行的具有线性飞机动力学的实验。介绍了结构飞行员模型的修改。介绍了 Matlab/Simulink 环境中飞行员模型参数选择算法的两种方法。将飞行员建模结果与测量的飞行员频率响应进行比较,并介绍和讨论了新得出的操纵品质水平边界。讨论了一种使用通过建模获得的均方误差值来评估操纵品质的方法。最后,简要讨论了改进的结构飞行员在非线性飞机动力学情况下描述人类飞行员行为的能力。
为提高微电网灵活资源利用率,满足不同场景下微电网的储能需求,提出一种基于双层优化的微电网集中式共享储能容量优化配置模型。首先,分析弹性微电网中共享储能与可控负荷的响应特性,设计满足多场景调节需求的集中式共享储能运行模式。然后,以集中式共享储能净收益最大为上层,以微电网内负荷支付成本最小为下层,构建双层优化配置模型。进一步采用多目标鲸鱼优化算法对双层优化模型进行求解。结果表明:通过协调微电网内可转移负荷与可削减负荷,提高共享储能利用率,共享储能可以共同满足多场景调节需求。
螺旋桨驱动,倒车不应导致推进机械过载。(3) 当蒸汽涡轮机用作主推进装置时,它们应能够在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮机因“风阻”和摩擦的影响而过热。(4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内并从所有控制位置进行。测试计划应由船厂提供并经验船师接受。如果制造商已定义具体操作特性,则应将其纳入测试计划。(2018) (5) 推进装置的反向特性,包括可调螺距螺旋桨的叶片螺距控制系统,应在试验期间进行演示和记录。(2018)
螺旋桨驱动,倒车不应导致推进机械过载。 (3) 当蒸汽涡轮用作主推进装置时,它们应能在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮因“风阻”和摩擦的影响而过热。 (4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内和所有控制位置进行。船厂应提供测试计划,并经验船师接受。如果制造商已定义特定的操作特性,则应将其包括在测试计划中。 (5) 推进装置的换向特性,包括可调螺距螺旋桨的桨叶变距控制系统,应在试验期间进行演示和记录。(2018)
微刺激可以调节单个神经元的活性影响行为,但是刺激对神经尖峰的影响是复杂的,并且仍然了解不足。这在人大脑中尤其具有挑战性,因为单个神经元的响应特性稀疏和异质。在这里,我们在6位参与者(3位女性)中使用人前颞叶中的微电极阵列来检查单个神经元对通过多个不同不同刺激位点进行微刺激的尖峰反应。我们证明可以使用不同的刺激位点的激发或触发来驱动单个神经元,这表明一种方法可以在单神经元水平上直接控制尖峰活动。尖峰反应在接近刺激部位的神经元中是抑制性的,而兴奋反应在空间上更为分布。一起,我们的数据表明,可以在人皮质中可靠地识别和操纵单个神经元的尖峰反应。