但是,对于启发,规范,验证和验证,有最小的工具支持。这是一项具有挑战性的任务,因为需要参与此过程的专家(伦理学家,律师,监管机构,最终用户等)的非技术和各种背景。我们的软件Sleec-TK是一种用户友好的工具包,采用正式方法,允许利益相关者在验证和验证Sleec要求的验证和验证中了解和解决问题。Sleec-TK是一种公开可用的工具包,可由非技术专家使用,可在[1-3]中支持该过程和技术。由Sleec-TK机械化的Sleec框架包括规则启发过程[1]以及规范,验证和验证技术[2]。[3]中的技术报告介绍了我们的理论基础和过程,以实现Sleec要求的规范,一致性验证和验证。它讨论了Sleec-TK软件中使用的领域特定语言(DSL)和该语言的正式语义,并采用了定时版本的CSP(交流顺序过程)[4]。[2]中描述了我们工具的初始版本,该版本仅支持Sleec语言建模,一致性和冗余验证。我们在这里描述的版本实现了语义的更新版本,该版本提供了增加的可伸缩性,并已得到了广泛的验证。此外,它通过对SLUEC规则的系统模型的一致性验证得到了增强(即,图中所示的Sleec一致性插件1是我们软件中的新组件)。此外,对于Sleec-TK,我们用7个Sleec规范文件验证了规则和语言,与利益相关者一起涵盖了199个规则。从规范思想的角度[5,6]的角度,在开发自主系统方面有重要的工作,包括基于用户的道德选择的透明度[7],解释性和数据驱动的个性化工具[8]。我们Sleec语言的工作还考虑了启发和调试的替代方法[9]。sleec-tk与规范的操作[1] [10]有关,支持自动化过程,以验证和验证捕获这些规范的规则,通过其在𝑡𝑜𝑐𝑘-CSP中描述的语义机械化(定时过程代数[4,11])。sleec-tk被用作Eclipse环境的一组插件,但包括用于Sleec规则验证的独立版本。存储库中的readme.md文件提供了用于下载,安装和使用软件的说明,并提供示例。规则的定义是通过图形界面提供有关任何句法或打字问题的指导的图形界面。在后台,生成𝑡𝑜𝑐𝑘-CSP脚本以支持冲突和冗余的检查。通过在后台使用CSP型号Checker FDR4 [12],以按下按钮进行。验证是通过与Robotool 1 [13]集成而进行的,这是一种使用域特异性符号Robochart建模和验证移动和自治机器人的工具。SLEEC规则可以作为Robochart模型的文档定义属性的一部分,用于自动验证和报告。
在人工智能的最前沿,本文深入研究了同理心理,以彻底改变计算机能力的获取,并促进在线高等教育中的动机,监管和元认知动态。先前关于学生处理移情反馈的研究是有限的,通常会忽略学习表现及其对学生动机,自我调节和元认知推理的影响。目的是分析在线学习中这四个问题的同理心反馈,认知和情感的有效性。使用了准实验设计,其中将对话代理DSLAB-BOT集成到教学大纲和信息技术基础架构中。在线大学分布式系统课程(n = 196)的学生,通过单级集群概率抽样选择。他们分别分为实验组和对照组,分别从DSLAB机器人和老师那里获得反馈。结果表明,除了一项(自我效能感)和自我调节外,两组之间的学习绩效,动机或自我调节之间没有显着差异。在13个认知(1-4、6、7、9-15)和七个情感(1、4-9)聊天机器人反馈类型之间存在牢固的相关性,具有概念上的变化(MRCC)和个人成长和理解(MRPGU)。相似的聊天机器人反馈类型的权重很高,表明这些反馈对元认知推理组件的明显影响,甚至是自我反射(MRSR)。此外,特定的移情反馈类型对于强烈培养MRCC,MRPGU和MRSR至关重要。总而言之,同理心聊天机器人的反馈与人类教师的反馈在促进学习,动机和自我调节方面一样有效。从业人员应考虑这些特定类型的移情反馈,以供未来的移情代理人配置。
关键参数:社会情感学习(SEL)基于社会学习理论,并重点介绍情绪管理,压力管理,同理心和社交技能。通过SEL,学生可以通过观察,与他人互动和模仿他人来发展社会和情感技能。将SEL纳入医学教育将确保医生发展与患者建立积极关系并应对医疗工作的情感需求所必需的社会和情感技能。sel包括六个领域,即认知,情感,社会,价值观,观点和身份域。这六个领域与六个核心能力密切相关。认证医学教育认证委员会(ACGME)指出每个医生都应拥有,这表明SEL的领域在医学教育的背景下高度相关。此外,SEL可以导致同理心的发展,这可以提高医生了解患者的观点和情感的能力以及韧性,这可以使医师能够更有效地应对其工作的需求,并可以导致整体发展,并了解医生对工作和人类工作方面的理解。