基于喷墨的微电子制造系统通常具有多个打印头,可以使用银导电轨道图案的丙烯酸绝缘层沉积。选择系统允许在印刷结构中集成主动和被动组件。可以通过采用模块化方法,整合三维喷墨打印,拾取和位置,材料分配[2],3D检查[3]和基于条件的监测[4-7]过程来增强制造系统的灵活性。添加剂制造系统可以在非常快速的过程中在单个机器上形成多种微电子包。在几个小时内从CAD设计过渡到功能产品的能力可以深刻地改变公司如何处理商业可销售产品的原型制作和开发。
组件。[1]它们由一个有机半导体薄膜组成,该薄膜在两个电极之间具有图案,即源和排水管。半导体薄膜与浸入栅极电极的电解质接触。通过应用栅极电压(V g),来自元素的离子进入半导体,改变其掺杂状态和电导率,进而改变了在源和排水量和排水管之间流动的电流(排水电流,I D)。[2]这种体积掺杂机制高度有效,导致i d发生巨大变化,以减少v g的小变化。结果,OECTS显示出非常高的转频(G M =∂Id /∂vG),这是控制信号弹药的参数。[3]但是,对于OECT的响应时间通常非常慢,因为离子必须穿透整个膜。[4]这种特征的组合使OECT适用于生物推导和大区域电子的某些领域,最著名的是可打印的电子产品。[1,5,6]
摘要 — 喷墨打印技术提供了一种经济高效、低能耗、占地面积最小且适应性强的替代计算形式。喷墨打印的传感器和电路产生的废物最少,通常可生物降解,并且可以以添加的方式进行修改和/或重印。本报告介绍了一种晶体管启发的喷墨打印元件,该元件具有模拟 CMOS 杂化,是更具动态性和非线性的计算元件的早期形式。尽管所展示的设备功能性较低,但研究工作朝着可用于非冯诺依曼计算的混合电子学迈出了一步。喷墨打印元件是通过将银和碳纳米管纳米颗粒分层在纸和聚对苯二甲酸乙二醇酯基板上制成的,其方式模仿了晶体管的结构。在 MATLAB 中对碳纳米管元件进行了数学建模,然后在 PSpice 中用于模拟行为建模。输出经过验证并用于设计混合线性动态电路。实验数据和模拟结果表明这些早期设计在电路和系统制造中具有实用性。
增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
Brian K. Paul ac 、Kijoon Lee ac 、Yujuan He b 、Milad Ghayoor ac 、Chih-hung Chang b 和 Somayeh Pasebani ac a 俄勒冈州立大学机械、工业与制造工程学院,俄勒冈州科瓦利斯,97330 b 俄勒冈州立大学化学、生物与环境工程学院,俄勒冈州科瓦利斯,97330 c 俄勒冈州立大学先进技术与制造研究所 (ATAMI),俄勒冈州科瓦利斯,97330 提交人 Neil Duffie (1),麦迪逊,美国 本文讨论了一种新型混合方法的基本原理,该方法使用改进的激光粉末床熔合 (LPBF) 机器合成氧化物弥散强化 (ODS) 304L 不锈钢 (SS) 合金。此前,ODS 金属基复合材料是通过球磨由 LPBF 生产出来的,但这种方法的规模化成本很高。在这里,我们通过在激光转化和固结之前将前体化学物质喷射到 SS 基材上,选择性地将氧化钇纳米颗粒掺杂到 SS 基材中。这种新合金表现出良好的室温机械性能。使用电子显微镜、能量色散光谱和电子背散射衍射研究微观结构。关键词:增材制造、金属基复合材料、不锈钢
对于需要最高质量输出的具有大量可变数据内容的应用程序,或者首选 PDF 工作流程的应用程序,我们有 Domino Editor™ RIP。这种模块化解决方案从简单的桌面到多个机架安装刀片,可以配置为处理您的数据要求。还支持全灰度图像处理,以获得最高质量的打印输出。包括 PDF 文件以及 IPDS 和 AFP 数据流的选项。
一个直接的优势是减少浪费——数字印刷是一种非接触式装饰技术(与压在精致瓷砖上的滚筒或平网印刷相比),因此不会出现瓷砖破损。下一个优势是最小批量变成了一个,因此转换或设置新设计不会浪费材料或时间,因此成本为零。相比之下,传统方法每次设计转换都需要新的丝网或滚筒套,还要花费时间和精力检查颜色一致性。事实上,现在计算机可以控制颜色,这也意味着更容易一次又一次地复制图案,从而减少库存。所有这些变化都降低了成本和库存资金,这是大规模数字化转换的主要财务驱动力。
在所有印刷中,一旦图像准备好印刷,就必须设置生产线。这通常被称为“准备”。在模拟和数字印刷中,必须对齐基材,并准备和测试油墨系统。在彩色模拟印刷中,还必须安装和定位印版(每种印刷工艺颜色一个:青色、黄色、洋红和黑色) - 这需要一些技巧,通常通过运行机器一小段时间来验证,以便确保一切都正确对齐 - 打印机称之为“套准”。还必须仔细调整转移到基材上的油墨量,以确保良好的复制效果。所有这些都需要时间并浪费材料。对于数字印刷,准备是一个更短的过程,可以减少到几乎为零,从而减少浪费。