有机薄lm晶体管,4个显示器,5个射频式染色器设备(RFIDS),6个智能服装7和传感器。8对于这些应用,喷墨技术的独特优点是,它提供了一个数字,非接触和无掩模的添加图案过程,可用于存放和模式多种材料。9该技术的其他优势包括低成本,材料节省和对大面积制造的可扩展性。10这些功能使喷墨打印技术特别适合于在电子电路或设备制造的各种孔基板上打印导电轨道和图案。喷墨印刷中最重要的组件之一敏化电子设备是导电材料。已经研究了几种候选导电材料,例如导电聚体,11,12碳,13 - 15石墨烯,16,17有机金属化合物,18
摘要:陶瓷墨水的稳定流变特性是喷墨印刷(IJP)的关键要求,应根据雷诺和韦伯的数字满足。在本文中,引入了反向微乳液,以合成单分散的纳米化陶瓷粉末,平均大小小于100 nm。比较两种不同的分散剂,即多丙烯酸铵(PAANH 4)和多丙烯酸辅助(PAA),表明前者对陶瓷墨水产生了良好的分散效应。沉积比,Zeta电位,表面张力,粘度和墨水密度,并计算了Reynolds和Weber数量以及Z值。在老化72小时后,可以实现稳定,均匀且高的固体负载(20 wt%)陶瓷墨水。最后,陶瓷油墨在喷墨打印过程中显示了所需的可打印属性。将喷墨打印技术与烧结过程相结合,Ni-Mn-OFIM有可能监视智能可穿戴设备的温度和湿度参数。
摘要:甲状腺激素的测定对于甲状腺功能亢进症和甲状腺功能减退症疾病的疾病具有实际临床意义。考虑到这一方面,已经开发了包括免疫测定,化学发光,质谱和高性能液相色谱等广泛的分析方法。这种类型的分析提供了可行的结果。尽管如此,它需要合格的员工,特殊设施,并且耗时。因此,本文依赖于用喷墨打印技术开发的电化学设备的制造,以免费检测甲状腺素(T4)。为了制造我们的电化学设备,从扩增电信号的材料的使用中考虑了几个方面,到找到对目标分析物具有亲和力的超分子支架以及对电极表面上分析物的需求。对于此任务,用混合纳米材料修改了印刷设备,该混合纳米材料由氧化石墨烯(RGO)组成,该氧化石墨烯(RGO)用Au纳米颗粒(AU – NP)和包裹剂和不同的Thiolate Cyclodextrins(X – CD-SH)作为携带剂。分析物通过超分子化学的化学预召集,因为环糊精和激素之间的包含复合物形成。形态学和电化学表征,以确保电极的正确可行性,从而达到出色的响应,灵敏度和检测极限(LOD)。
ODME 正在与学术合作伙伴合作开发用于半导体和微电子的下一代薄膜沉积系统。(ODME 资助劳动力和材料开发研究。Flight Opportunities 资助硬件开发。)o EHD 喷墨使用电场而不是压电力进行非常精确的沉积。该系统有可能将薄膜沉积 SOA 推进到纳米范围。o ODME 和 Flight Opportunities 已经在 FY23 之前完成了两次抛物线飞行活动(120 次抛物线)的零重力测试。计划在 FY23 进行另外两次活动§ ODME 与威斯康星大学和 Sciperio 合作,正在为 Advanced Toolplate 开发新的 EHD 喷墨工具头。§ 测试 Advanced Toolplate 和新工具头的抛物线飞行活动原定于 8 月进行,但已被飞行提供商重新安排到 2023 年 10 月。SPEC DMP-2850 IJ(行业标准)EHD 喷墨
在本文中,我们表明,由于蒸发效应,通过无颗粒墨水的等离子体转化制备的银 (Ag) 结构的表面形貌可由溶剂控制。我们使用了三种基于乙二醇的溶剂系列来系统地改变墨水的蒸气压。喷墨打印之后,通过暴露于低压、低温射频 (RF) 等离子体来转化薄膜。Ag 薄膜的扫描电子显微镜 (SEM) 和轮廓测定法表明,表面粗糙度和孔隙率取决于墨水溶剂的蒸气压,并且随着蒸气压的降低而增大。由于孔隙率的变化,电阻率随着溶剂蒸气压的降低而增大。为了证明金属印刷技术对粗糙多孔薄膜的效用,我们使用由三种基于乙二醇的溶剂组成的墨水制作了基于 Ag 的过氧化氢 (H 2 O 2 ) 传感器。发现这些传感器的灵敏度与表面粗糙度和孔隙率有关,而这又与溶剂的蒸汽压有关。
I. 引言为了满足未来高频电子器件的需求,开发新的技术方法十分必要。在集成方面,主要要求是能够制造复杂的二维和三维微型结构以及混合电介质材料和金属。LTCC(低温共烧陶瓷)[1] 是一种可行的方法。它允许使用低温烧制陶瓷材料和高电导率金属(金、银)。但该技术存在一些局限性:用 LTCC 制造的组件是通过堆叠单条带制成的,因此限制了可实现的几何形状(2.5-D 配置而不是真正的 3-D)。盲孔、沟槽或金属壁不易制作(即使提出了接近的解决方案,例如用过孔栅栏代替金属壁)。此外,混合电介质材料极其困难。立体光刻技术(SL)在特定约束下实现了这一目标。后者包括制造复杂的 3D 组件 [2-4]。到目前为止,该技术基于一种电介质制造,尚无法在单个制造步骤中将金属和电介质材料组合在一起。喷墨打印技术的最新进展使得在一步制造中实现复杂的金属电介质结构 [5-7]。使用这种方法,我们旨在制造创新的高频元件,以获得紧凑性、性能和设计灵活性。我们必须面对的挑战之一是优化一种可以在低温(~900°C)下固化的电介质墨水,从而与银纳米颗粒墨水等高电导率金属墨水兼容。在此背景下,本文介绍了两种基于陶瓷的添加剂技术:(1)喷墨打印方法,首先对基于银纳米颗粒和低温烧制陶瓷材料墨水的多材料和多层组件进行打印测试。(2)一种专用于 RF 组件制造的基于陶瓷的 SL 技术。如图所示,喷墨打印和 SL 技术都是未来 RF 组件的替代技术的候选。II。喷墨技术 A. 喷墨打印原理 该技术基于不同材料薄层的叠加以构建 2D 或 3D 组件,使用多喷嘴压电打印头在基板上输送精确体积的墨滴(几 pL)(图 1)。
图 7. 用于横向原子力显微镜 (AFM) 测量的集成尖端的静电硅致动器的 SEM 细节图(根据 [3])。 微结构和微元件:不是传感器或致动器的微型部件。例如:微透镜、镜子、喷嘴和梁;这些部件必须与其他元件组合才能提供有用的功能。 微系统和微仪器:将上述几种元件与适当的电子封装集成到微型系统或仪器中。它们往往非常特定于应用。例如:微型激光器、微型光谱仪、光学化学分析仪。制造这类系统的经济性往往使商业化变得困难。 微系统的工业应用:薄膜磁头、光盘、汽车部件、喷墨打印头、医疗应用、化学和环境应用。 4. 喷墨打印头 • 目前是微系统技术最大的应用之一。 • 一台典型的喷墨打印机每年要用掉好几个墨盒。 • 当今的喷墨打印机的分辨率为每英寸 1200 点 (dpi)。
产品类别 产品系列 描述 示例应用 沉积工艺 IME DM-SIP-100X 银导电模内电子屏幕 DM-CAP-1060S 碳导电模内电子屏幕 DM-INS-1500 交叉电介质模内电子屏幕 可拉伸 DM-SIP-2000 银导电 可穿戴设备、医疗、汽车屏幕 DM-SCP-2000 银/碳导电 可穿戴设备、医疗、汽车屏幕 DM-CAP-2100 碳导电 可穿戴设备、医疗、汽车屏幕 DM-INS-2500 绝缘体 可穿戴设备、医疗、汽车屏幕 银 DM-SIP-3000 低温微薄片 显示器、薄膜光伏、智能玻璃、加热器、汽车、航空航天屏幕和微米粉银浆 DM-SIP-3100 高粘度纳米银浆 薄膜光伏、加热器屏幕 DM-SIJ-3200 纳米银喷墨 OPV、显示器、传感器喷墨 DM-SIJ-3300 纳米银 气溶胶打印 半导体、医疗 气溶胶喷射 氯化银 DM-SIP-3400 银和氯化银浆料 生物传感器 屏幕/注射器 碳 DM-CAP-4100 高耐久性热固性碳浆 汽车 屏幕 DM-CAP-4300 低温热固性碳浆 传感器 屏幕 DM-CAP-4400 疏水性碳浆 生物传感器 屏幕 DM-CAP-4500 柔性碳浆 医疗、纸张 屏幕 DM-CAP-4700 钙钛矿碳浆 钙钛矿太阳能电池 屏幕/注射器 铜 DM-CUI-500X 光烧结纳米铜墨水 PV、半导体 喷墨 DM-CUI-501X 光烧结纳米铜墨水 PV、半导体 气溶胶喷射 DM-CUI-505X 微米/纳米铜混合浆料 汽车、半导体、 PV 屏幕 DM-CUP-5080 和纳米铜浆料系统 汽车、半导体、PCB、PV 屏幕 DM-CUP-5100 涂层 DM-OCI-6000 喷墨印刷涂层 传感器、显示器涂层 DM-OC-6020S 热固性涂层 汽车涂层 DM-OC-6031S 透明低温固化 显示器、触摸传感器涂层 绝缘体 DM-INI-7003 高环氧含量 PV、显示器 喷墨 DM-IN-7011S 紫外线固化热固性材料 工业 屏幕 DM-IN-7021S 热固化热固性材料 加热器 屏幕 透明 DM-SNW-8012S 透明导电 显示器、触摸传感器、加热器 屏幕 导电石墨烯 DM-GRA-9000 单层和多层石墨烯 传感器、加热器 喷墨 DM-GRA-9100 碳/石墨烯混合物加热器、传感器、汽车 屏幕 导电 DM-AS-10000 环氧热固性导电胶 混合印刷电子 注射器/屏幕/模板 胶粘剂 DM-SAS-10000 高拉伸性、柔韧性 可穿戴设备、模内电子 注射器/屏幕/模板导电胶 DM-SSA-10300S 银烧结芯片粘接 半导体组装 注射器/屏幕/模板 非导电 DM-ADH-11001 非导电胶 传感器、混合印刷电子 注射器/屏幕/模板 胶粘剂 压阻 DM-PIR-12000 压阻传感器 屏幕 高温 DM-SIP-14000 金属陶瓷糊料 加热器、电阻器、电位器 屏幕 烧结 DM-INS-14100 介电体和釉面 加热器、电阻器 屏幕 热界面 DM-TIM-15000 凝胶/油灰 半导体、PCB 组装、注射器 材料 汽车、电池 DM-TIM-15200 相变材料 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 DM-TIM-15300 热固性环氧树脂 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 DM-TIM-15400 油脂 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 封装剂/ DM-UFL-16000 SMT 组件底部填充/封装剂 混合印刷电子 屏幕 底部填充剂 DM-ENC-16200 可拉伸 UV 固化热固性材料 可穿戴设备 屏幕 密封剂 DM-HMS-17000 UV 固化、激光和高温 PV、半导体 屏幕/注射器烧制密封剂
摘要:本文介绍了一种将超薄硅芯片嵌入机械柔性阻焊层中并通过喷墨打印实现电接触的方法。将感光阻焊层通过保形喷涂涂覆到具有菊花链布局的环氧粘合超薄芯片上。使用紫外线直接曝光的光刻技术打开接触垫。实现了直径为 90 µ m 和边长为 130 µ m 的圆形和矩形开口。喷墨打印含有纳米银和金的商用油墨,以在菊花链结构之间形成导电轨道。应用了不同数量的油墨层。通过针探测来表征轨道电阻。银油墨仅在多层和 90 µ m 开口时才显示低电阻,而金油墨在至少两层印刷层时表现出个位数 Ω 范围内的低电阻。
相比之下,最近人们已使用基于 MHP 且不需要光刻的技术来生产大面积、高效且低成本的光电子器件和太阳能电池。[8] MHP 尤其适合用溶液处理法,因为它们易于在低温下合成、对缺陷具有耐受性、吸收能力强、在可见光和近红外范围内可调谐带隙能量、光致发光量子产率 (PLQY) 高、发射峰窄、传输特性好、非辐射复合中心密度低。[9–13] 例如,文献中已报道了高效的钙钛矿发光二极管 (PeLED)[2,14–17],其发射波长在可见光范围内。 2014 年报道的第一款 PeLED 的外部量子效率 (EQE) 约为 0.1%(混合甲基铵溴化铅,MAPbBr3)[18],其发展速度极快,迄今为止报道的 EQE 已超过 21%,可与最先进的 OLED 相媲美。[2,19]