通过胃肠道 (GI) 输送大分子仍然是一项重大挑战。已经开发和研究了各种使用物理药物输送模式的技术,以克服胃肠道上皮细胞层进行局部和全身输送。这些技术包括直接注射、喷射、超声波和离子电渗疗法,这些技术在很大程度上改编自透皮药物输送。通过内窥镜使用针头直接注射药物已在临床上使用了一个多世纪。喷射是一种无针药物输送方法,其中高速流体药物流渗透到组织中,已在临床前评估了将药物输送到颊粘膜中的效果。在临床前动物模型中,超声波已被证明有利于增强大分子(包括核酸)的输送。通过离子电渗疗法应用电场梯度将药物驱动到组织中,已被证明可以将剧毒化疗药物输送到胃肠道组织中。本文深入概述了胃肠道中这些药物输送的物理模式及其临床和临床前用途。关键词:注射、喷射、微针、离子电渗疗法、超声波、上皮层 1. 简介
摘要 增材制造在能源转换和存储领域的应用越来越广泛。它为制造具有改进物理性能的结构材料提供了极大的灵活性,并且还具有其他优势,例如减少材料浪费、缩短制造时间和提高成本效益。本文讨论了储能设备增材制造的最新发展。总结了结构材料的数字设计方法和主流增材制造技术,包括大桶光聚合、粉末床熔合、材料喷射、粘合剂喷射、材料挤出和定向能量沉积。然后,全面回顾了电化学和热能存储领域的最新进展。最后,提出了一个考虑数字设计和增材制造的综合框架,适用于广泛的能源应用。
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
常规套装: 137116 EXA Advanced™ 重型体型常规套装 2 件装 137117 EXA Advanced™ 常规型常规套装 2 件装 137118 EXA Advanced™ 单相常规套装 2 件装 137119 EXA Advanced™ 喷射型常规套装 2 件装 138116 EXA Advanced™ 重型体型常规套装 8 件装 138117 EXA Advanced™ 常规型常规套装 8 件装 138118 EXA Advanced™ 单相常规套装 8 件装 138119 EXA Advanced™ 喷射型常规套装 8 件装
摘要 在本研究中,我们提出了一种新颖的冷却方案,该方案利用铜反蛋白石 (CIO) 在单相冲击喷射冷却系统中进行表面增强。我们执行计算流体动力学模拟来评估 CIO 喷射冷却器的冷却性能。我们的建模结果表明,所提出的 CIO 涂层冷却器可以显著降低平均温度并提高整个芯片表面的温度均匀性。CIO 涂层冷却器的平均努塞尔特数可达到平面喷射冷却器的 2.8 倍。然而,CIO 涂层冷却器的多孔结构会增加总压降。为了确定具有高冷却性能和低能耗的设计,我们研究了两个关键的设计因素,即入口速度和喷嘴到 CIO 的距离。我们的分析表明,增加入口速度会进一步增强热传递,但代价是高压降。另一方面,喷嘴与 CIO 之间的距离越大,压降越小,但传热系数也会降低。通过研究流阻网络,可以进一步了解喷嘴与 CIO 之间的距离的影响。此外,我们提出了一个降阶模型,可以准确捕捉所提设计的热流体特性。
它显示了药剂喷射持续时间、空气流量和速度、药剂/空气混合模式和火灾情景的相对重要性。火灾区域中药剂的合理目标浓度是所需的浓度
大多数传统制造技术都基于减材技术。因此,AM 可以被视为一种非传统方法,因为零件将通过在后续工艺中添加材料来生产。AM 中的一般技术是逐层构建零件,其由其原始计算机辅助设计 (CAD) 文件预先确定。当前的 AM 技术主要可分为七个工艺,如图 1 所示。简要介绍每个工艺的相关技术。光聚合槽 (VPP) 的工作原理是固化感光树脂以构建最终的固体几何形状。粉末床熔合 (PBF) 利用最初以床形式熔化的固体颗粒,并通过外部能量源 (激光/电子束) 融合在一起以构建最终的固体几何形状。定向能量沉积 (DED) 技术利用将原料材料导向能量源,同时在多个构建平面中移动能量源和材料进料机构。材料挤出 (ME) 工艺在喷嘴处熔化原料材料,同时将其挤出以生产固体零件。材料喷射 (MJ) 工艺通过使用喷嘴以液滴形式喷射构建材料来工作。液滴将通过特定机制(蒸发/凝结)转化为固体材料。同样,粘合剂喷射 (BJ) 的工作原理是将液体粘合剂材料喷射到粉末床上,从而在粉末颗粒之间产生粘合作用,以构建固体几何形状。与喷射技术相反,直接写入 (DW) 工艺直接以液体或气体的形式释放构建材料,并将其凝固在构建基底上以创建所需的几何形状 [2]。最后,薄板层压 (SL) 的工作原理是将两张预成型或初始形状的薄板固态焊接 [2]。在这里,我们不讨论此类 AM 技术的具体操作原理和深入细节,因为这超出了我们的范围。我们建议读者参考其他地方的参考资料以获取有关 AM 流程的详细信息[3]。