Landauer 形式主义 • 一维散射现象 • 基于量子现象和库仑阻塞的装置。课程设计教学包括讲座、计算练习、实验课和研究项目。必须参加实验课和项目工作以及与之相结合的其他教学。课程的讲座部分完成后,学生将在研究小组中开展为期约 1.5 周的项目工作。评估考试在课程期间以书面形式以实验报告的形式进行,在课程期间以书面和口头形式以项目演示的形式进行,并在课程结束时以书面考试的形式进行。未通过常规评估的学生将在之后不久获得另一次评估机会。
约430 nm。为了便于GaN芯片与条带的有效组装,将使用3D聚乳酸打印机制备的固定器扣在PCB上并用于固定条带的一端,如图1d所示。条带与器件之间的初始间距设计为0.2 mm,选择杨氏模量为190 GPa的304型不锈钢作为条带材料,以避免与被测流体发生化学反应。使用宽度为6 mm的宽条带不仅可以避免环境光的影响,还可以确保发射器的发光被高度覆盖。而且由于GaN器件不接触流体,流体的吸收或透明度不会影响测量结果。
“界面就是器件”。2000 年诺贝尔物理学奖获得者赫伯特·克勒默的宣言精辟地概括了界面在电子器件功能和性能中发挥的核心作用。[1] 对于基于低维或拓扑量子材料的器件来说,这句话更是如此,因为它们的性质通常对表面和界面周围的几个原子层敏感。[2-5] 如此精密的“量子器件”需要能够以良好可控的方式实现原子级清洁、突变和平整界面的制造技术。这显然超出了低真空、环境空气或溶液环境下的传统制造工艺的范围。分子束外延 (MBE) 是一种可以提供最佳界面条件和可控性的制备方法,采用超高真空 (UHV) 环境、高纯度蒸发源、缓慢的生长速度和可精细调节的生长参数。[6] 标准 MBE 技术通常用于生长薄膜和垂直异质结构。一些平面纳米结构也可以通过 MBE 制备,[7,8] 但其控制效果不如传统光刻或电子束光刻那么好。通过 MBE 生长的“干净”样品必须经历“肮脏”的制造过程才能制成器件。这些过程中产生的不受控的表面和界面会显著改变器件的性能,尤其是由表面/界面敏感的量子材料制成的器件。人们非常希望通过分子束外延直接生长由量子材料组成的极其脆弱的器件,然后将其封装在超高真空环境中,以保留其原有性能。在过去的几年中,在平面纳米结构和器件的直接分子束外延生长技术方面取得了令人鼓舞的实验进展,[9-18] 这在很大程度上得益于
基于物理模型和传感器数据的组合来设计电气元件。 国际流动性 作为一名博士候选人,您将在代尔夫特理工大学和 Reden 各工作 18 个月。在代尔夫特理工大学实习期间,您还将在 IMEC 进行为期 1 个月的实习,由 Bart Vandevelde 博士指导。 要求 适用于“地平线欧洲:玛丽居里 (MSCA)”计划的具体资格标准,包括流动性规则和博士学位规则。欢迎任何国籍的申请人。 其他要求 理学、电气/机械工程、物理学、数学硕士学位 FE 模拟(例如 Abaqus 或 Comsol)和编程(例如 Matlab、Python)背景 英语水平:托福-IBT 测试 >100 分或雅思考试 >7,0 每月的支持和福利 成功的候选人将受益于由学术和工业合作伙伴组成的国际科学网络
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。
这项工作报道了基于 MgO/Al 2 O 3 的电阻随机存取存储器 (ReRAM) 器件的电阻开关特性。分析表明,由于加入了 Al 2 O 3 插入层,主要导电机制从空间电荷限制导电变为肖特基发射。与单层器件相比,MgO/Al 2 O 3 双层 ReRAM 器件表现出更低的功率运行(降低 50.6%)和更好的开关均匀性,具体取决于堆栈配置。这可归因于 MgO/Al 2 O 3 界面处较低的氧空位积累和细丝限制,从而导致更可控的开关操作。对双层器件的进一步 X 射线光电子能谱 (XPS) 深度剖面分析表明,开关动力学与氧空位浓度直接相关。这些发现表明界面层工程对于改善 MgO 基存储器件的电阻开关特性的重要性,从而可以实现低功耗应用。
阿塔尔·比哈里·瓦杰帕伊 - 印度信息技术与管理学院瓜廖尔分校 (ABV-IIITM Gwalior) 是印度首屈一指的学院,由印度政府人力资源与开发部 (MHRD) 于 1997 年创办,是信息技术与管理领域的卓越中心。它是上述领域提供优质高等教育的领先学院,位于印度中央邦北部的瓜廖尔市。学院活动旨在通过高度竞争的学术环境以及学院与企业界之间的密切互动来发展探究和研究文化。学院与业界保持着活跃的联系。学院通过了 ISO 9001:2008 和 NAAC “A” 认证。它还被印度政府宣布为国家重要学院。在 2017 年印度尼西亚大学评估的 UI 绿色指标世界大学排名中,该学院在全球排名第 164 位,在印度排名第 1 位。该学院在 2022 年绿色排名中还位列印度第 6 位,NIRF 工程类别排名为第 78 位。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
摘要:纵观人类历史,对光、电和热的控制已逐渐成为各种电气和电磁技术创新和发展的基石。无线通信、激光和计算机技术都是通过改变光和其他能量形式的自然行为方式以及如何以受控的方式管理它们而实现的。在纳米尺度上,为了控制光和热,近二十年来已经开发出成熟的纳米结构制造技术,并实现了一系列突破性工艺。光子晶体、纳米光刻、等离子体现象和纳米粒子操控是这些技术成功应用的主要领域,并催生了一个被称为超材料的新兴材料科学分支。超材料和功能材料开发策略侧重于物质本身的结构,通过广泛操控光(更广泛地说是电磁波)获得了非常规和独特的电磁特性。超材料的纳米结构具有精确的形状、几何形状、尺寸、方向和排列。此类配置正在影响电磁光波,产生难以甚至不可能用天然材料获得的新特性。本综述从材料、机制和先进超器件的角度深入讨论了这些超材料和超表面,旨在为这一令人兴奋且迅速崛起的课题的未来工作提供坚实的参考。