摘要:人们对 3D 打印在传感器制造中的应用越来越感兴趣。使用 3D 打印技术为制造几何和功能复杂的传感器提供了一种新方法。这项工作介绍了对 3D 打印热塑性纳米复合材料在施加力下的压缩的分析。获得了相应电阻变化与施加负载的响应,以评估打印层作为压力/力传感器的有效性。聚乳酸 (PLA) 基质中的多壁碳纳米管 (MWNT) 和高结构炭黑 (Ketjenblack) (KB) 被挤出以开发可 3D 打印的细丝。研究了创建的 3D 打印层的电和压阻行为。MWNT 和 KB 3D 打印层的渗透阈值分别为 1 wt.% 和 4 wt.%。厚度为 1 mm 的 PLA/1 wt.% MWNT 3D 打印层表现出负压系数 (NPC),其特征是,当压缩载荷增加至 18 N 且最大应变高达约 16% 时,电阻会下降约一个数量级。在力速率为 1 N/min 的循环模式下,PLA/1 wt.% MWNT 3D 打印层表现出良好的性能,压阻系数或应变系数 (G) 为 7.6,压阻响应幅度 (A r) 约为 -0.8。KB 复合材料在循环模式下无法显示稳定的压阻响应。然而,在高力率压缩下,PLA/4 wt.% KB 3D 打印层导致大灵敏度的响应(Ar=-0.90)并且在第一个循环中不受噪声影响,具有 G = 47.6 的高值,这是一种高效的压阻行为。
摘要 量子计算最有前途的应用之一是处理图像等图形数据。在这里,我们研究了基于交换测试实现量子模式识别协议的可能性,并使用 IBMQ 噪声中型量子 (NISQ) 设备来验证这个想法。我们发现,使用双量子比特协议,交换测试可以有效地以良好的保真度检测两个模式之间的相似性,尽管对于三个或更多量子比特,真实设备中的噪声会变得有害。为了减轻这种噪声影响,我们采用破坏性交换测试,这显示出三量子比特状态的性能有所提高。由于云对较大 IBMQ 处理器的访问有限,我们采用分段方法将破坏性交换测试应用于高维图像。在这种情况下,我们定义了一个平均重叠度量,当在真实 IBMQ 处理器上运行时,它可以忠实地区分两个非常不同或非常相似的模式。作为测试图像,我们使用具有简单模式的二进制图像、灰度 MNIST 数字和时尚 MNIST 图像,以及从磁共振成像 (MRI) 获得的人体血管的二进制图像。我们还介绍了一种利用金刚石中的氮空位 (NV) 中心进行破坏性交换测试的实验装置。我们的实验数据显示单量子比特状态具有高保真度。最后,我们提出了一种受量子联想记忆启发的协议,其工作方式类似于监督学习,使用破坏性交换测试进行量子模式识别。
受量子噪声影响的通用量子比特幺正算子被复制并插入到相干叠加通道中,叠加了两个路径,这些路径提供给穿过噪声幺正的探测量子比特,并由控制量子比特驱动。对叠加通道在探测-控制量子比特对的联合状态上实现的变换进行表征。然后针对噪声幺正相位估计的基本计量任务对叠加通道进行专门分析,其性能由经典或量子 Fisher 信息评估。与传统估计技术以及最近为类似相位估计任务研究的具有不确定因果顺序的量子切换通道进行了比较。在此处的分析中,第一个重要的观察结果是,叠加通道的控制量子比特虽然从未直接与被估计的幺正相互作用,但仍然可以单独测量以进行有效估计,同时丢弃与幺正相互作用的探测量子比特。切换通道也存在此属性,但无法通过传统技术实现。这里在一般条件下描述了控制量子比特的最佳测量。第二个重要的观察结果是噪声在将控制量子比特耦合到幺正量子比特中起着至关重要的作用,并且控制量子比特在非常强的噪声下仍可用于相位估计,即使在完全去极化的噪声下也是如此,而常规估计和切换通道在这些条件下不起作用。结果扩展了相干控制通道能力的分析,这些通道代表了可用于量子信号和信息处理的新设备。
量子计算机利用量子力学进行计算,使我们能够准备和操纵没有经典等价物的状态。特别是,叠加和纠缠等现象可能使量子计算机在某些应用方面胜过经典计算机。事实上,事实已经证明,随着整数的增加,寻找整数素因数所需的步骤数呈指数增加 [1]。然而,Shor 的因式分解算法可以在多项式时间内对素数进行因式分解。事实上,D-Wave 2000Q 计算机已经取得了令人鼓舞的结果,因为它能够使用 94 个逻辑量子比特门对数字 376289 进行因式分解 [2]。因此,开发新的加密协议至关重要,因为在线交易的安全性假定不可能使用经典算法在合理的时间内对大数进行因式分解。此外,量子计算机有望有效模拟大型原子系统以了解其特性。使用经典计算机,随着原子数量的增长,计算时间呈指数级增长,而在量子计算机上,计算时间呈多项式增长 [3]。实现这些有用的量子算法取决于构建不受噪声影响的精确量子硬件。环境噪声会降低量子比特的相干时间,这意味着量子比特无法长时间保持在所需状态以执行复杂的计算。目前,量子比特的相干时间在 10 微秒的数量级,这不足以解决有趣的问题。因此,减轻噪声和设计耐噪声的量子计算机是必要的。为此,要充分利用量子计算机的功能,就必须表征和了解噪声源以及它们如何影响特定的量子系统。通常,T 1 和 T 2 用于量化噪声。在
摘要 —本文考虑了量子密钥分发 (QKD) 网络中以最大可实现速率进行安全数据包路由的问题。假设 QKD 协议为多跳网络中每条链路上的安全通信生成对称私钥。量子密钥生成过程受噪声影响,假设由随机计数过程建模。首先使用每跳可用的量子密钥对数据包进行加密,然后通过通信链路以点对点方式传输。在这种情况下出现的一个基本问题是设计一种安全且容量可实现的路由策略,该策略考虑到加密量子密钥的可用性随时间变化以及传输的有限链路容量。在本文中,通过将 QKD 协议与通用最大权重 (UMW) 路由策略 [1]–[3] 相结合,我们设计了一种新的安全吞吐量最优路由策略,称为串联队列分解 (TQD)。 TQD 有效地解决了多种流量(包括单播、广播和多播)的安全路由问题。本文的主要贡献之一是表明该问题可以简化为转换网络上的通常的广义网络流问题,而不受密钥可用性约束。模拟结果表明,与最先进的路由和密钥管理策略相比,所提出的策略产生的延迟要小得多。所提出的策略的吞吐量最优性的证明利用了 Lyapunov 稳定性理论以及对密钥存储动态的仔细处理。索引术语 — 量子密钥分发、吞吐量最优路由、网络算法。
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 电容输入 转换输入范围 ±4.096 pF 1 工厂校准 积分非线性 (INL) 2 ±0.01 % FSR 无失码 2 24 位转换时间 ≥ 62 ms 分辨率,pp 16.5 位转换时间 = 62 ms,见表 5 有效分辨率 19 位转换时间 = 62 ms,见表 5 输出噪声,rms 2 aF/ √ Hz 见表 5 绝对误差 3 ±4 fF 1 25°C,V DD = 5 V,失调校准后 失调误差 2,4 32 aF 1 系统失调校准后,不包括噪声影响 4 系统失调校准范围 2 ±1 pF 失调漂移与温度的关系 –1 aF/°C 增益误差 5 0.02 0.08 % FS 25°C, V DD = 5 V 增益漂移与温度的关系 2 –28 –26 –24 ppm of FS/°C 允许的接地电容 2 60 pF 参见图9和图10 电源抑制比 0.3 1 fF/V 常模抑制比 65 dB 50 Hz ± 1%, 转换时间 = 62 ms 55 dB 60 Hz ± 1%, 转换时间 = 62 ms 通道间隔离 70 dB 仅限AD7746 CAPDAC全范围 17 21 pF 分辨率 6 164 fF 7位 CAPDAC 漂移与温度的关系 2 24 26 28 ppm of FS/°C 激励频率 32 kHz 电容两端电压 ±V DD /8 V 可通过数字接口配置 ±V DD /4 V ±V DD × 3/8 V ±V DD /2 V 电容上的平均直流电压
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 电容输入 转换输入范围 ±4.096 pF 1 工厂校准 积分非线性 (INL) 2 ±0.01 % FSR 无失码 2 24 位转换时间 ≥ 62 ms 分辨率,pp 16.5 位转换时间 = 62 ms,见表 5 有效分辨率 19 位转换时间 = 62 ms,见表 5 输出噪声,rms 2 aF/ √ Hz 见表 5 绝对误差 3 ±4 fF 1 25°C,V DD = 5 V,失调校准后 失调误差 2,4 32 aF 1 系统失调校准后,不包括噪声影响 4 系统失调校准范围 2 ±1 pF 失调漂移与温度的关系 –1 aF/°C 增益误差 5 0.02 0.08 % FS 25°C, V DD = 5 V 增益漂移与温度的关系 2 –28 –26 –24 ppm of FS/°C 允许的接地电容 2 60 pF 参见图9和图10 电源抑制比 0.3 1 fF/V 常模抑制比 65 dB 50 Hz ± 1%, 转换时间 = 62 ms 55 dB 60 Hz ± 1%, 转换时间 = 62 ms 通道间隔离 70 dB 仅限AD7746 CAPDAC全范围 17 21 pF 分辨率 6 164 fF 7位 CAPDAC 漂移与温度的关系 2 24 26 28 ppm of FS/°C 激励频率 32 kHz 电容两端电压 ±V DD /8 V 可通过数字接口配置 ±V DD /4 V ±V DD × 3/8 V ±V DD /2 V 电容上的平均直流电压
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 电容输入 转换输入范围 ±4.096 pF 1 工厂校准 积分非线性 (INL) 2 ±0.01 % FSR 无失码 2 24 位转换时间 ≥ 62 ms 分辨率,pp 16.5 位转换时间 = 62 ms,见表 5 有效分辨率 19 位转换时间 = 62 ms,见表 5 输出噪声,rms 2 aF/ √ Hz 见表 5 绝对误差 3 ±4 fF 1 25°C,V DD = 5 V,失调校准后 失调误差 2,4 32 aF 1 系统失调校准后,不包括噪声影响 4 系统失调校准范围 2 ±1 pF 失调漂移与温度的关系 –1 aF/°C 增益误差 5 0.02 0.08 % FS 25°C, V DD = 5 V 增益漂移与温度的关系 2 –28 –26 –24 ppm of FS/°C 允许的接地电容 2 60 pF 参见图9和图10 电源抑制比 0.3 1 fF/V 常模抑制比 65 dB 50 Hz ± 1%, 转换时间 = 62 ms 55 dB 60 Hz ± 1%, 转换时间 = 62 ms 通道间隔离 70 dB 仅限AD7746 CAPDAC全范围 17 21 pF 分辨率 6 164 fF 7位 CAPDAC 漂移与温度的关系 2 24 26 28 ppm of FS/°C 激励频率 32 kHz 电容两端电压 ±V DD /8 V 可通过数字接口配置 ±V DD /4 V ±V DD × 3/8 V ±V DD /2 V 电容上的平均直流电压
1 简介 1 1.1 技术支持 1 1.2 WindFarmer 的安装 1 1.3 快速入门 2 2 WindFarmer 界面 3 2.1 WindFarmer 工作区 3 2.2 窗口类型和相关工具栏 4 2.3 映射窗口光标模式 6 2.4 显示、控制和状态栏 11 3 基础模块 14 3.1 基础模块界面 14 3.2 输入文件 17 3.3 WindFarmer 控制面板 42 3.4 Wind Studio 49 3.5 计算风流量 55 3.6 启动风流量模型计算 63 3.7 修改风流量模型 63 3.8 设置场地约束 63 3.9 能量产量计算 66 3.10 使用现有风力发电机作为参考 72 3.11 布局优化 75 3.12 导出和报告 76 3.13 噪声计算 83 3.14 结果的图形表示 86 4 MCP+ 模块 88 4.1 数据加载器 - 加载时间序列 89 4.2 编辑桅杆、传感器和校准 95 4.3 检查和清理数据 97 4.4 数据汇总统计 104 4.5 数据分析 108 4.6 MCP+ 模块的应用 116 5 多个项目 117 5.1 项目 117 5.2 项目工具界面 117 5.3 项目属性 119 5.4 创建多个项目 122 5.5 累积视觉影响 123 5.6 累积噪声影响 126 6 可视化模块 127 6.1 可视化模块界面 127 6.2 输入数据 129 6.3 创建线框可视化 129 6.4 创建渲染景观可视化 132 6.5 计算 ZVI 地图 134 6.6 照片蒙太奇 135 6.7 可视化功能 136 6.8 视觉布局约束 137 6.9 雷达站 137 6.10 飞行
可以可靠执行的算法(Deutsch 2020;Bharti 等人 2022)。随着早期量子设备的普及,自然而然地出现了一个问题,即在实验层面上了解通用量子设备中内部噪声过程留下的特征是否具有普遍特征或特定量子平台的特征。此外,人们可能想知道这种噪声特征是否具有时间相关的特征,或者在设备运行时是否可以有效地被认为是稳定的,即随着时间的推移保持恒定。这些问题的答案对于定义适当的策略以减轻噪声和系统误差的影响(Degen 等人 2017 年;Sza'nkowski 等人 2017 年;Do 等人 2019 年;M¨uller 等人 2020 年;Wise 等人 2021 年)至关重要,可能超越标准量子传感技术(Cole 和 Hollenberg 2009 年;Bylander 等人 2011 年;´ Alvarez 和 Suter 2011 年;Yuge 等人 2011 年;Paz-Silva 和 Viola 2014 年;Norris 等人 2016 年)并克服探针尺寸和分辨率的当前限制(Cole 和 Hollenberg 2009 年;Bylander 等人 2011 年;Frey 等人 2017 年;M¨uller 等人)。 2018 ;Hern´andez-G´omez 等人 2018 ;Hern´andez-G´omez 和 Fabbri 2021 )。此外,如果有人证明噪声特征是单个设备所特有的,它就变得更加重要,结果是衰减噪声影响的问题可能比预期的更难。事实上,每个量子技术平台,从超导电路(Devoret 等人 2004 ;Clarke 和 Wilhelm 2008 )到捕获离子量子计算机(Wineland 等人 2003 )、光子芯片(Spring 等人 2013 ;Metcalf 等人 2014 )和拓扑量子比特(Freedman 等人 2003 ),都可能需要通常昂贵且与设备不兼容的临时解决方案