可以可靠执行的算法(Deutsch 2020;Bharti 等人 2022)。随着早期量子设备的普及,自然而然地出现了一个问题,即在实验层面上了解通用量子设备中内部噪声过程留下的特征是否具有普遍特征或特定量子平台的特征。此外,人们可能想知道这种噪声特征是否具有时间相关的特征,或者在设备运行时是否可以有效地被认为是稳定的,即随着时间的推移保持恒定。这些问题的答案对于定义适当的策略以减轻噪声和系统误差的影响(Degen 等人 2017 年;Sza'nkowski 等人 2017 年;Do 等人 2019 年;M¨uller 等人 2020 年;Wise 等人 2021 年)至关重要,可能超越标准量子传感技术(Cole 和 Hollenberg 2009 年;Bylander 等人 2011 年;´ Alvarez 和 Suter 2011 年;Yuge 等人 2011 年;Paz-Silva 和 Viola 2014 年;Norris 等人 2016 年)并克服探针尺寸和分辨率的当前限制(Cole 和 Hollenberg 2009 年;Bylander 等人 2011 年;Frey 等人 2017 年;M¨uller 等人)。 2018 ;Hern´andez-G´omez 等人 2018 ;Hern´andez-G´omez 和 Fabbri 2021 )。此外,如果有人证明噪声特征是单个设备所特有的,它就变得更加重要,结果是衰减噪声影响的问题可能比预期的更难。事实上,每个量子技术平台,从超导电路(Devoret 等人 2004 ;Clarke 和 Wilhelm 2008 )到捕获离子量子计算机(Wineland 等人 2003 )、光子芯片(Spring 等人 2013 ;Metcalf 等人 2014 )和拓扑量子比特(Freedman 等人 2003 ),都可能需要通常昂贵且与设备不兼容的临时解决方案
主要关键词