ᵝ䚻䛺㡿ᇦ䛻ர䜛 Brain Computer Interface 䠄 BCI 䠅䛾◊✲䛜 ┒䜣䛻⾜䜟䜜䛶䛔䜛䠊 BCI ◊✲䛿㐠ື㔝䛾ほ 䛛䜙ᶵჾ᧯స 䜢┠ᣦ䛩䜒䛾䛜ඛ⾜䛧䛶䛔䜛䛜 [1][2] 䠈㡢ኌゝㄒ䛻㛵䜟䜛 BCI ◊✲䜒䠈 fMRI 䜔 PET 䛷㘓䛥䜜䛯䝕䞊䝍䛾ほ 䛛䜙䠈ᴫᛕ ㉳ Æ ゝㄒ⾲⌧䝥䝷䞁䝙䞁䜾 Æ 㡢⠇䞉༢ㄒ䞉ᩥ⾲⌧ Æ Ⓨヰ㐠ື ⚄⤒⣔䛾άື䛻⮳䜛▱ぢ䛜✚䛥䜜䠈◊✲䛜άⓎ䛻䛺䛳䛶䛔 䜛 [3][4] 䠊䛣䛾ศ㔝䛷䛿 ECoG 䜢⏝䛔䛯◊㻌㻌㻌㻌㻌㻌㻌✲䛜ඛ⾜䛧 䛶䛔䜛䛜䠈㠀くⓗ䛻䛛䛴䝸䜰䝹䝍䜲䝮䛻ಙྕ䜢ほ 䛷䛝䜛 EEG 䜔 MEG 䛜ᐇ⏝䜢⪃䛘䜛䛸ᮃ䜎䛧䛔䠊 ሗ࿌⪅䜙䛿㡢ኌ㉳䛾 EEG ಙྕ䜢ᑐ㇟䛻䠈 ” ゝㄒ⾲㇟䛿 ▷㛫 tone-burst Ἴ⩌䛷䛒䜛 ” 䛸䛾௬ㄝ䜢❧䛶䠈⥺䝇䝨䜽䝖䝹≉ ᚩ㔞䜢ᢳฟ䛧䛯ᚋ䠈䝇䝨䜽䝖䝹䝟䝍䞊䞁䛛䜙┠ど䝷䝧䝸䞁䜾䛷 ㉳༊㛫䜢ྠᐃ䛩䜛䛸ඹ䛻䠈 0 䛛䜙 9 䛾 10 ᩘᏐ䛸ẕ㡢㡢⠇䛻ྵ䜎 䜜䜛 17 㡢⠇䜢ศ㢮䛩䜛◊✲䜢⾜䛳䛶䛝䛯 [5] 䠊ᮏሗ࿌䛷䛿䠈᭱ ึ䛻 17 㡢⠇䜢୕䛴䛾㡢⠇䜾䝹䞊䝥 ( ẕ㡢㡢⠇䠈᭷ኌ㡢⠇䠈↓ ኌ㡢⠇ ) 䛻ศ䛡䛶ㄆ㆑䛧䛯㝿䛾ᐇ㦂⤖ᯝ䜢㏙䜉䜛䠊䛣䛾ᐇ㦂䛷 䛿Ꮫ⩦䝕䞊䝍ᩘ䜢ቑ䜔䛩䛯䜑䠈 (i) ᩘᏐ㡢ኌ㉳ ( 䛾ྛ㡢⠇䝕 䞊䝍 ) 䛸ู䛻䠈㡢⠇⾜ (/ga- gi- gu- ge- go/) 䜢㉳䛧䛶᥇ྲྀ䛧䛯䝕 䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 (ii) 㡢⣲䜢ྵ䜐㡢⠇ (/g/ = /ga, gi, gu, ge, go/, /o/ = /o, ko, so, to, no,…../) 䛛䜙㡢⣲䝕䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 䛻䛴䛔䛶䜾䝹䞊䝥ෆ䛾㡢⠇䜢ㄆ㆑䛧䛯⤖ᯝ䜢ሗ࿌䛩䜛䠊 ⥆䛔䛶䠈ಶ䚻䛾㡢⠇㆑ู䜢┠ᶆ䛻䠈ከ㔞䝕䞊䝍䛾㞟䜢⾜䛖䠊 ⬻Ἴ㘓䛷䛿䠈⣧㡢䝖䝸䜺䞊䛾┤ᚋ䛻 1 ▷㡢⠇䛾㡢ኌ㉳䜢⾜ 䛖䛣䛸䛷䠈 1 ᅇ䛾㉳㘓㛫䜢▷䛟䛧䠈ከ㔞䝕䞊䝍䜢㘓䛷䛝 䜛䜘䛖䛻䛧䛯䠊䛣䜜䛻䜘䛳䛶䠈␚䜏㎸䜏䝙䝳䞊䝷䝹䝛䝑䝖䝽䞊䜽 (CNN) 䛺䛹䛾῝ᒙᏛ⩦ᑟධ䛜ྍ⬟䛻䛺䜛䠊ᮏᩥ䛷䛿䠊≉ᚩ㔞䛸 䛧䛶⬻ෆ✵㛫䛾 RMS ሗ䜢ᢳฟ䛧䠈 0 䛛䜙 9 䛻ྵ䜎䜜䜛 10 ಶ 䛾ᩘᏐ䛸ẕ㡢㡢⠇䛾 17 㡢⠇䜢䠈ḟඖ␚䜏㎸䜏䝙䝳䞊䝷䝹䝛 䝑䝖䝽䞊䜽䜢⏝䛔䛶㡢⠇ㄆ㆑䛩䜛䠊
当伯格(Berger)在1929年报道了人类脑浪潮发现时,大众媒体的感觉将其报告为“思想电气记录”,生理学家花了五年时间将其视为“思想的关键记录”,而日本学会认为它是“关键”和阴暗的事物。它在这一特殊特征的开头说:“如果进行测量以捕获生物学现象为生物学信号,则有必要考虑获得的测量值反映的结果反映了什么,并且不反映生物学现象,以及所获得的数据是否与测量目的相匹配。”据认为,伯杰(Berger)从一对放置在头皮上的电极中记录了电活动,精确地记录了放置在头皮上的电极。从我们当前的角度来看,波形是α波本身,表明上蜡和减弱。但是,当时的神经生理学家认为这种缓慢的振动反映了神经系统中的电活动。 在神经系统的电活动是未知的时候,这是不可避免的,除了神经纤维产生的动作电位。此外,媒体以与伪科学设备相同的水平将脑波视为“思维电记录”,该设备可以衡量当时流行的人格和心理能力,也被认为是生理学家与他们距离的距离的原因。 演讲五年后,著名的生理学家和诺贝尔奖获奖者阿德里安(Adrian)和马修斯(Matthews)发表了夺回论文,并在生理学协会进行了公开实验,而伯格(Berger)的“ eeg”被认为是一种反映大脑活动的电动活动,而不是1)。这可能是因为Adrian发现了与水生神经节细胞中类似于α波相似的缓慢的电势波动3)和Goldfish脑干4),实际上观察到眼睛张开和计算任务中α阻断的外观,使他坚信它是脑源性的电活动。 这样,在脑电图被公认为反映大脑活动的电活动之后,它已用于研究癫痫和意识受损(睡眠)。但是,直到今天,他还没有为阐明精神疾病的病理做出太多贡献,精神病学教授伯杰从一开始就一直期望这一疾病。
㉳⬻Ἴ䛿Ⓨヰ⬻Ἴ䛸䛿␗䛺䜚䠈ṇ☜䛺㉳้䛜 ᫂░䛷䛒䜛䛸䛔䛖ၥ㢟䛜䛒䜛䠊䛭䛣䛷䠈ᅗ 2 䛾㘓䝥䝻䝖䝁䝹䛻䛚 䛔䛶䠈⿕㦂⪅䛿⣧㡢䛜㬆䜚⤊䜟䛳䛯┤ᚋ䛻㉳䜢㛤ጞ䛧䛶䛔䜛 䛸௬ᐃ䛧䠈 1 ༢ㄒ䛾㉳㛫䜢 400ms 䛸⪃䛘䠈 0-400ms( ⣧㡢┤ ᚋ :0ms) 䜢ゎᯒ༊㛫䛸䛩䜛䠊 3.2 ⠇䛷ㄝ᫂䛧䛯 6 䛴䛾≉ᚩ㔞䛩䜉 䛶䜢⏝䛔䛯䛯䜑䠈ධຊḟඖᩘ䛿䠈 ( ⥺䝇䝨䜽䝖䝹௨እ䛾 5 䛴䛾≉ ᚩ㔞㽢 21ch 䠇⥺䝇䝨䜽䝖䝹 25 ḟඖ ) 㽢 2( ᖹᆒ䛸ᶆ‽೫ᕪ ) 䛾 260 ḟඖ䛷䛒䜛䠊 10 ྡ䛾⿕㦂⪅䛾ᖹᆒṇゎ⋡䜢ᅗ 6 䛾䛂 0- 400ms ༊㛫䛃䛻♧䛩䠊ᅗ 6 䜘䜚䠈ṇゎ⋡䛿 20% 䜋䛹䛷䛒䜚䠈ㄆ㆑ 䛷䛝䛶䛔䛺䛔䛣䛸䛜䜟䛛䜛䠊 ṇゎ⋡䛜ప䛔ཎᅉ䛾୍䛴䛸䛧䛶䠈ṇ☜䛺㉳༊㛫䛜≉ᐃ䛷 䛝䛶䛔䛺䛔Ⅼ䛜ᣲ䛢䜙䜛䠊䛭䛣䛷䠈㉳⬻Ἴ䛸ྠ䛨䝥䝻䝖䝁䝹 䛷㘓䛧䛯Ⓨヰ⬻Ἴ䛻╔┠䛧䛯䠊ྠ䛨䝥䝻䝖䝁䝹䛷㘓䛧䛶 䛔䜛䛣䛸䛛䜙䠈Ⓨヰ䛸㉳䛾㛤ጞ้䜔⥅⥆㛫䛿ᴫ䛽୍⮴䛩 䜛䛸௬ᐃ䛧䛯䠊䛭䛧䛶Ⓨヰ㛫䜢䜒䛸䛻ゎᯒ༊㛫䜢Ỵᐃ䛩䜜䜀䠈 ㉳༊㛫䛷䛾ㄆ㆑ᐇ㦂䛜⾜䛺䛘䜛䛿䛪䛷䛒䜛䠊௨ୖ䛾䛣䛸䛛䜙䠈 Ⓨヰ⬻Ἴ䜢㘓䛧䛯㝿䛻㘓㡢䛧䛯㡢ኌ䝕䞊䝍䛛䜙ྛ⿕㦂⪅ 䛾ᩘᏐ䛤䛸䛾Ⓨヰ㛫䜢⟬ฟ䛩䜛䠊 ⿕㦂⪅䛤䛸䛾Ⓨヰ㛤ጞ㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛹䛾⿕㦂⪅ 䜒 250ms ௨㝆䛻Ⓨヰ䜢㛤ጞ䛧䛶䛚䜚䠈⣧㡢䛾㬆䜚⤊䜟䜚┤ᚋ䛻 Ⓨヰ䜢㛤ጞ䛧䛶䛔䜛⿕㦂⪅䛿䛔䛺䛛䛳䛯䠊䜎䛯䠈⿕㦂⪅䛻䜘䛳 䛶㛤ጞ㛫䛿␗䛺䛳䛶䛔䛯䠊䛥䜙䛻䠈ྠ䛨ᩘᏐ䛻䛚䛡䜛⿕㦂⪅ 䛤䛸䛾Ⓨヰ⥅⥆㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛣䛱䜙䜒⿕㦂⪅䛻䜘䛳 䛶␗䛺䜛䛣䛸䛜䜟䛛䛳䛯䠊䛣䛾⤖ᯝ䛛䜙䠈ゎᯒ༊㛫䛸䛧䛶䛔䛯 0- 400ms 䛿ᐇ㝿䛾㉳༊㛫䛸䛝䛟␗䛺䛳䛶䛔䜛ྍ⬟ᛶ䛜㧗䛔䠊 䜘䛳䛶䠈㉳䛾ゎᯒ༊㛫䜢ྛ⿕㦂⪅䛾༢ㄒ䛤䛸䛾Ⓨヰ㛤ጞ 㛫䛸⤊㛫䜢䜒䛸䛻ኚ᭦䛧䠈ᨵ䜑䛶㡢ኌ㉳༢ㄒㄆ㆑ᐇ㦂 䜢⾜䛖䠊
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。
2015 年,Bolloré 集团在联合国气候变化大会 (COP21) 期间在香榭丽舍大街启动了第一条 Bluetram 线路,继续部署其清洁和可持续的出行解决方案。作为官方合作伙伴,集团还向联合国成员国提供了 Bluebus 和 Bluecar ® 车队。集团继续开发电动汽车共享解决方案,在印第安纳波利斯投入使用 Blueindy,意大利的 Bluetorino 也将很快加入其中。新蓝区 (Bluezones) 在非洲的贝宁、刚果和几内亚兴起,它们是为当地居民提供电力、饮用水、互联网和其他多种服务(如年轻企业家孵化器)的生活空间。所有这些用于个人或集体出行以及智能使用和储存电力的创新都是对可持续发展和能源储存问题的回答,这些问题已成为公民、城市和政府面临的主要问题。集团历史悠久的业务线——运输和物流,也预见到了其活动中不可避免的技术趋势以及气候变化的影响。因此,我们在勒阿弗尔的物流枢纽项目在“COP21 解决方案”博览会上被评为运输和物流领域的“创新和有效”解决方案。今年的第二项重要活动是组织运输和物流活动。在日益增长的需求中
集团各部门均在考虑各业务单位具体情况的同时,运用这一战略愿景,确保行动部署一致、可持续。集团业务领域的多样性反映在其企业社会责任政策中:> 由于运输和物流部门的特殊性质和地理位置,该部门制定了特别严格的人力资源和健康安全政策。员工是该业务领域成功的关键;> 通过 Vivendi,通讯部门的战略以人权为基础,特别是促进文化多样性、知识共享、支持年轻人和保护个人数据;> 电力存储和解决方案部门的发展基于一项投资和创新政策,该政策致力于对抗污染和支持能源转型。集团的优先事项(所有子公司都一样)包括降低与商业道德相关的风险、确保遵守人权、实施支持与员工建立可持续关系的就业政策、投资开发创新和环保的产品和服务,以及成为其所在地区经济和社会发展的重要合作伙伴。—
在容错方面,量子计算的实用性将取决于量子算法中噪声影响的可避免程度。混合量子-经典算法(如变分量子特征值求解器 (VQE))是为短期方案设计的。然而,随着问题规模的扩大,VQE 结果通常会因当今硬件上的噪声而变得杂乱。虽然错误缓解技术在一定程度上缓解了这些问题,但迫切需要开发对噪声具有更高鲁棒性的算法方法。在这里,我们探索了最近引入的量子计算矩 (QCM) 方法对基态能量问题的鲁棒性,并通过分析示例展示了底层能量估计如何明确地滤除非相干噪声。受此观察的启发,我们在 IBM Quantum 硬件上为量子磁性模型实现了 QCM,以检查随着电路深度的增加噪声过滤效果。我们发现 QCM 保持了极高程度的误差稳健性,而 VQE 则完全失效。在量子磁性模型中,对于多达 20 个量子比特的超深试验态电路(最多 500 个 CNOT),QCM 仍然能够提取合理的能量估计值。大量实验结果支持了这一观察结果。要达到这些结果,VQE 需要在错误率上将硬件改进大约 2 个数量级。
脑成像中普遍存在的一个挑战是噪声的存在,这会阻碍对潜在神经过程的研究,尤其是脑磁图 (MEG) 具有非常低的信噪比 (SNR)。提高 MEG 信噪比的既定策略包括对与同一刺激相对应的多次重复数据进行平均。然而,重复刺激可能是不可取的,因为潜在的神经活动已被证明会在试验过程中发生变化,而重复刺激会限制受试者体验到的刺激空间的广度。特别是,一次观看电影或故事的自然主义研究越来越受欢迎,这需要发现新的方法来提高 SNR。我们引入了一个简单的框架,通过利用受试者在经历相同刺激时神经反应的相关性来减少单次试验 MEG 数据中的噪声。我们在 8 名受试者的自然阅读理解任务中展示了它的用途,在他们阅读同一故事一次时收集了 MEG 数据。我们发现我们的程序可以减少数据中的噪声,并可以更好地发现神经现象。作为概念验证,我们表明 N400m 与单词惊讶的相关性(文献中已证实的发现)在去噪数据中比在原始数据中更明显。去噪数据还显示出比原始数据更高的解码和编码准确度,这表明与阅读相关的神经信号在去噪过程后得到保留或增强。