成像方式如今已成为医学中必不可少的诊断工具。从 2009 年到 2019 年,美国的 CT、MRI 和 PET 检查数量分别增加了约 18%、42% 和 105%(1)。这种不断增长的需求已经超过了实际供应,导致法国/欧洲的 MRI 和 PET 扫描不合理地延迟了数周甚至数月(2)。适当的图像去噪可能有助于减少扫描时间,甚至减少 PET 的注射剂量。它可以增加检查次数,而不会影响太多工作时间或需要安装新的医学成像设备。深度学习作为人工智能 (AI) 的一个分支,可以构建有前景的去噪模型。我们专注于 PET 成像,因为它的扫描时间较长,因此去噪效果会更好。尽管许多研究实际上都在研究这种方法的临床表现,但它也可能影响其他新兴领域,如基于成像的预测模型、放射组学和其他 AI 应用 (3)。医学图像基本上是基于其密度 (CT)、磁性 (MRI) 或功能信息 (PET/SPECT) 的不同灰度级的视觉表示。灰度值的分布表征了信息的异质性。一个快速发展的领域称为放射组学,它提供了一种从图像中提取基于强度、形状、纹理的不同特征的方法,以构建预测模型 (4)。这种方法有望预测患者的结果。它们可能允许个性化治疗。例如,在肺癌中计算了一个包括放射组学特征的总体生存预测模型(5)。2013 年至 2018 年间,该领域的发表论文年增长率为 177.82%(6)。这些模型非常有前景,但仍需付出一些努力才能在常规临床环境中转化和实施它们(7)。人工智能在医学成像领域的应用尚处于早期阶段。在本文中,我们使用了深度学习,更具体地说是卷积神经网络方法,它们代表了人工智能技术的一个细分领域。如今,深度学习在图像重建、处理(去噪、分割)、分析和预测建模中发挥着关键作用。这些应用在未来将得到进一步发展(8)。在大多数这些任务中,它们的表现往往优于更传统的方法 ( 9 )。将这种基于 AI 的 PET/MR 去噪算法与临床数据进行比较,发现对比度与噪声比增加了 46.80 ± 25.23%,而仅使用高斯滤波器的对比度与噪声比仅为 18.16 ± 10.02%(10)。在(10)中研究的其他方法,如引导非局部均值、块匹配 4D 或深度解码器,分别将 CNR 提高了 24.35 ± 16.30%、38.31 ± 20.26% 和 41.67 ± 22.28%。也可以在重建期间执行去噪,但这无法在现有机器上实现。最重要的限制是所有这些方法都缺乏 FDA 或 CE 认证。我们的研究重点是 Subtle PET™(Subtle Medical,美国斯坦福,由法国 Incepto 提供)。它是一款经 FDA 和 CE 批准的 FDG PET(11)后处理去噪软件,基于卷积神经网络(CNN),这是最常见的图像处理深度学习架构。
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
病理性脑损伤在脑图像中呈现出不同的外观,由于缺乏全面的数据和注释,很难训练监督检测解决方案。因此,在这项工作中,我们解决了无监督异常检测问题,仅使用健康数据进行训练,目的是在测试时检测未见的异常。许多当前方法采用具有限制性架构(即包含信息瓶颈)的自动编码器,这些自动编码器不仅会对异常部分进行不良重建,而且会对正常部分进行不良重建。相反,我们研究了经典的去噪自动编码器模型,这些模型不需要瓶颈,并且可以使用跳过连接来提供高分辨率保真度。我们设计了一种简单的噪声生成方法来升级低分辨率噪声,从而实现高质量的重建。我们发现,通过适当的噪声生成,去噪自动编码器重建误差可以推广到高强度病变分割,并达到脑 MRI 数据中无监督肿瘤检测的最新性能,击败了变分自动编码器等更复杂的方法。我们相信这为进一步研究无监督异常检测提供了强大且易于实施的基础。关键词:异常检测、无监督学习、自动编码器、去噪、MRI。
摘要:脑机接口(BCI)在各个领域有着广泛的应用。在基于脑电信号的研究中,信号去噪是必不可少的一步。本文提出了一种基于生成对抗网络(GAN)的去噪方法,对多通道脑电信号进行自动去噪。定义新的损失函数以确保滤波后的信号能够尽可能多地保留原始的有效信息和能量。该模型可以模仿和集成人工去噪方法,减少处理时间,因此可以用于大量数据处理。与其他神经网络去噪模型相比,所提出的模型多了一个判别器,它始终判断噪声是否被滤除。生成器则不断改变去噪方式。为了确保GAN模型稳定地生成脑电信号,提出了一种新的归一化方法,即基于样本熵阈值和能量阈值(SETET)归一化来检查异常信号并限制脑电信号的范围。去噪系统建立后,虽然去噪模型采用不同受试者的数据进行训练,但仍然能够适用于新受试者的数据去噪。本文讨论的实验采用HaLT公开数据集。相关性和均方根误差(RMSE)作为评价标准。结果表明,提出的自动GAN去噪网络达到了与手动混合人工去噪方法相同的性能。此外,GAN网络使去噪过程自动化,大大减少了时间。
(1) 爬电距离和电气间隙要求应根据应用的特定设备隔离标准来应用。应注意保持电路板设计的爬电距离和电气间隙,以确保印刷电路板上隔离器的安装垫不会减小此距离。在某些情况下,印刷电路板上的爬电距离和电气间隙会相等。在印刷电路板上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 此耦合器仅适用于最大工作额定值内的基本电气绝缘。应通过适当的保护电路确保符合安全额定值。 (3) 在空气或油中进行测试以确定隔离屏障的固有浪涌抗扰度。 (4) 视在电荷是由局部放电 (pd) 引起的放电。 (5) 屏障两侧的所有引脚连接在一起,形成一个双引脚设备。 (6) 系统隔离工作电压需要根据应用参数进行验证。
所有 Thermaltake TT RGB PLUS 产品均可连接到 Razer Chroma 生态系统。安装 TT RGB PLUS 软件和 Razer Synapse 3。
基于证据的支持在整个生命周期中对自闭症患者的支持:最大程度地提高潜力,最大程度地限制障碍并优化人与环境。柳叶刀神经病学。19((5):434–451,2020 (4)勋爵C,Charman T,Havdahl A等:自闭症的护理和临床研究的柳叶刀委员会。柳叶刀。399 (10321):271–334,2022 (5(5)Baron-Cohen S.科学美国博客[互联网] 2019年。可从:https:// blogs获得。scientififififations/observations/the-concept-of--oyovertity-is-dividing-the-autism-community/。((6)Calder L,Hill V,Pellicano e。:“有时候我想独自玩”:了解友谊对主流小学的自闭症儿童意味着什么。自闭症。17((3):296–316,2013 (7(7)Senju A,Maeda M,Kikuchi Y等:自闭症谱系障碍儿童缺乏传染性打哈欠。生物学信。3 (6):706–708,2007年(8)(8)Joly-Mascheroni RM,Senju A,Shepherd AJ:狗抓住了人类打哈欠。生物学信。4 (5):446–448,2008 (9(9)Palagi E,Leone A,Mancini G等:胶状狒狒中的传染性打哈欠,作为可能的表达
[参考] 1。Vikas Pathak等人,接受介入肺部程序的患者的抗凝剂和抗血小板治疗的管理,Eur Respir Rev 2017; 26:170020 2。James D.Douketis等人,执行摘要:抗血栓疗法的围手术期管理:美国胸部医师学院临床实践指南,胸部,2022年; 162:5:1127-1139 3。Indravadan J. Patel等人,介入放射学共识学会指南,围骨围骨治疗的血栓形成和出血风险,接受经皮图像引导的患者,血管和介入放射学杂志杂志,介入介绍性和介入的放射性放射学指南。 30:1168–1184 4。neuberger J等人,关于英国胃肠病学会临床实践中使用肝活检的指南,直肠2020; 69:1382–1403。doi:10.1136/gutjnl-2020-321299