Loading...
机构名称:
¥ 1.0

成像方式如今已成为医学中必不可少的诊断工具。从 2009 年到 2019 年,美国的 CT、MRI 和 PET 检查数量分别增加了约 18%、42% 和 105%(1)。这种不断增长的需求已经超过了实际供应,导致法国/欧洲的 MRI 和 PET 扫描不合理地延迟了数周甚至数月(2)。适当的图像去噪可能有助于减少扫描时间,甚至减少 PET 的注射剂量。它可以增加检查次数,而不会影响太多工作时间或需要安装新的医学成像设备。深度学习作为人工智能 (AI) 的一个分支,可以构建有前景的去噪模型。我们专注于 PET 成像,因为它的扫描时间较长,因此去噪效果会更好。尽管许多研究实际上都在研究这种方法的临床表现,但它也可能影响其他新兴领域,如基于成像的预测模型、放射组学和其他 AI 应用 (3)。医学图像基本上是基于其密度 (CT)、磁性 (MRI) 或功能信息 (PET/SPECT) 的不同灰度级的视觉表示。灰度值的分布表征了信息的异质性。一个快速发展的领域称为放射组学,它提供了一种从图像中提取基于强度、形状、纹理的不同特征的方法,以构建预测模型 (4)。这种方法有望预测患者的结果。它们可能允许个性化治疗。例如,在肺癌中计算了一个包括放射组学特征的总体生存预测模型(5)。2013 年至 2018 年间,该领域的发表论文年增长率为 177.82%(6)。这些模型非常有前景,但仍需付出一些努力才能在常规临床环境中转化和实施它们(7)。人工智能在医学成像领域的应用尚处于早期阶段。在本文中,我们使用了深度学习,更具体地说是卷积神经网络方法,它们代表了人工智能技术的一个细分领域。如今,深度学习在图像重建、处理(去噪、分割)、分析和预测建模中发挥着关键作用。这些应用在未来将得到进一步发展(8)。在大多数这些任务中,它们的表现往往优于更传统的方法 ( 9 )。将这种基于 AI 的 PET/MR 去噪算法与临床数据进行比较,发现对比度与噪声比增加了 46.80 ± 25.23%,而仅使用高斯滤波器的对比度与噪声比仅为 18.16 ± 10.02%(10)。在(10)中研究的其他方法,如引导非局部均值、块匹配 4D 或深度解码器,分别将 CNR 提高了 24.35 ± 16.30%、38.31 ± 20.26% 和 41.67 ± 22.28%。也可以在重建期间执行去噪,但这无法在现有机器上实现。最重要的限制是所有这些方法都缺乏 FDA 或 CE 认证。我们的研究重点是 Subtle PET™(Subtle Medical,美国斯坦福,由法国 Incepto 提供)。它是一款经 FDA 和 CE 批准的 FDG PET(11)后处理去噪软件,基于卷积神经网络(CNN),这是最常见的图像处理深度学习架构。

基于人工智能CNN的去噪对FDG PET放射组学的影响

基于人工智能CNN的去噪对FDG PET放射组学的影响PDF文件第1页

基于人工智能CNN的去噪对FDG PET放射组学的影响PDF文件第2页

基于人工智能CNN的去噪对FDG PET放射组学的影响PDF文件第3页

基于人工智能CNN的去噪对FDG PET放射组学的影响PDF文件第4页

基于人工智能CNN的去噪对FDG PET放射组学的影响PDF文件第5页

相关文件推荐