au:PleaseconfirnheadinglevelsarerepressedCornectedCorceponcely:有机体已经进化了一系列的本构(始终是活跃)和可诱导的(由寄生虫)防御机制,但是我们对这些正交防御策略的探索是什么有限的了解。细菌及其噬菌体提供了一个可进行的研究系统:细菌可以通过噬菌体受体突变(表面突变,SM)突变获得组成抗性,或通过其CRISPR-CAS适应性免疫系统引起的耐药性。使用理论和实验的组合,我们证明了建立的机制首先具有强大的优势,因为它削弱了选择替代电阻机制的选择。As a consequence, ecological factors that alter the relative frequencies at which the different resistances are acquired have a strong and lasting impact: High growth conditions promote the evolution of sm resistance by increasing the influx of receptor mutation events during the early stages of the epidemic, whereas a high infection risk during this stage of the epidemic promotes the evolution of CRISPR immunity, since it fuels the (infection-dependent) acquisition of CRISPR免疫力。这项工作强调了流行病早期瞬时进化动力学对构成和诱导防御的长期演变的强烈而持久的影响,这些防御能力可以利用以操纵临床和应用环境中的噬菌体抗性演化。
毒素 - 抗毒素(TA)系统是细菌用来调节噬菌体防御等细菌过程的普遍存在的两基因基因座。在这里,我们演示了一种新型III型TA系统AVCID的机制,并激活了对噬菌体感染的抵抗力。系统的毒素(AVCD)是一种脱氧胞苷脱氨酶,将脱氧胞苷(DC)转化为脱氧尿苷(DU),而RNA抗毒素(AVCI)抑制AVCD活性。我们已经表明,AVCD在噬菌体感染时脱氨基核苷酸脱氨基核苷酸,但是激活AVCD的分子机械词是未知的。在这里我们表明,AVCD的激活是由噬菌体诱导的宿主转录抑制,导致不稳定AVCI的降解。AVCD激活和核苷酸耗竭不仅减少噬菌体复制,而且还增加了缺陷的噬菌体形成。令人惊讶的是,AVCID不抑制的T7等噬菌体的感染也导致AVCI RNA抗毒素降解和AVCD激活,这表明AVCI的耗竭不足以赋予对某些噬菌体的保护。相反,我们的结果支持像T5这样较长复制周期的噬菌体对AVCID介导的保护敏感,而像T7这样的复制周期较短的噬菌体具有抗性。
摘要:在宏基因组学时代,从人类口腔的各个角落(从唾液到牙菌斑再到舌头表面)中鉴定出的病毒多样性加速增长。这种快速扩展表明我们对口腔病毒多样性的理解并不完整,只有少数研究结合了被动口水收集和宏基因组测序方法。在这项先导研究中,我们从杜克狐猴中心(美国北卡罗来纳州达勒姆)的健康工作人员那里获得了 14 个样本,以确定可在人类被动口水样本中鉴定出的病毒多样性。本研究使用高通量测序和病毒宏基因组工作流程鉴定了 3 种指环病毒、9 种 cressdnaviruses、4 种 Caudoviricetes 大噬菌体、29 种微病毒和 19 种 inoviruses 的完整基因组。这里介绍的结果扩展了我们对北卡罗来纳州(美国)人类口腔病毒组的脊椎动物感染和微生物感染病毒多样性的理解。
1个牙周病学系,Saveetha医学和技术科学研究所(SIMATS),Saveetha Dental College and Hospitals,Saveetha University,Chennai 600077,印度; arvamsi2009@gmail.com 2牙周牙科学院和医院牙周科,印度600119,东海岸路2/102; deeps.271@gmail.com 3牙科大学牙科牙科学院牙周牙科牙科学院,萨卡卡(Sakaka)72345,沙特阿拉伯4牙科学院,萨卡卡(Sakaka)72345,沙特阿拉伯萨卡卡(Jouf University),沙特阿拉伯(Saudi Arabia); sultan.abdulkarim.alfatakh@jodent.org(s.a.a.a. ); dr.haifa.ali@jodent.org(H.A.A.) 5卫生部,利雅得12613,沙特阿拉伯; maalobaida@moh.gov.sa(M.A.A。 ); aalkaberi@moh.gov.sa(A.A.A。) 6口腔与上颌面外科和诊断科学系口腔医学和颌面放射科,萨卡卡郡乔夫大学牙科学院,沙特阿拉伯72345; drkcs.omr@gmail.com 7口腔医学与放射学系,Saveetha牙科学院,Saveetha医学与技术科学研究所,Saveetha University,Chennai 602105,印度 *通信:Pradeepkumar.sdc@save@save@save@saveetha.com(P.K.Y.1个牙周病学系,Saveetha医学和技术科学研究所(SIMATS),Saveetha Dental College and Hospitals,Saveetha University,Chennai 600077,印度; arvamsi2009@gmail.com 2牙周牙科学院和医院牙周科,印度600119,东海岸路2/102; deeps.271@gmail.com 3牙科大学牙科牙科学院牙周牙科牙科学院,萨卡卡(Sakaka)72345,沙特阿拉伯4牙科学院,萨卡卡(Sakaka)72345,沙特阿拉伯萨卡卡(Jouf University),沙特阿拉伯(Saudi Arabia); sultan.abdulkarim.alfatakh@jodent.org(s.a.a.a.); dr.haifa.ali@jodent.org(H.A.A.)5卫生部,利雅得12613,沙特阿拉伯; maalobaida@moh.gov.sa(M.A.A。); aalkaberi@moh.gov.sa(A.A.A。)6口腔与上颌面外科和诊断科学系口腔医学和颌面放射科,萨卡卡郡乔夫大学牙科学院,沙特阿拉伯72345; drkcs.omr@gmail.com 7口腔医学与放射学系,Saveetha牙科学院,Saveetha医学与技术科学研究所,Saveetha University,Chennai 602105,印度 *通信:Pradeepkumar.sdc@save@save@save@saveetha.com(P.K.Y.); sdeepti20@gmail.com(D.S.)
由于最近的发现工作,已经发现了由细菌编码的100多个免疫系统,这些系统被拮抗了噬菌体(噬菌体)复制。这些系统采用直接和间接机制来检测噬菌体感染并激活细菌免疫。最有研究的机制是通过噬菌体相关的分子模式(phamp)(例如噬菌体DNA和RNA序列)直接检测和激活,并表达直接激活流产感染系统的噬菌体蛋白。噬菌体效应子也可能抑制宿主过程,因此间接激活免疫力。在这里,我们讨论了我们当前对在激活免疫力的噬菌体生命周期的各个阶段表达的这些蛋白质含量和效应子。免疫激活剂主要是通过分离出逃脱细菌免疫系统的噬菌体突变体的遗传方法来鉴定的,再加上生化验证。尽管对于大多数系统而言,噬菌体介导的激活的机制仍然不确定,但很明显,噬菌体生命周期的每个阶段都有可能诱导细菌免疫反应。
从受感染的大肠杆菌菌株W3350中分离出双链DNA(CL857 IND1 SAM7)分离出双链DNA。分子量为31.5 x 10e6 daltons,长度为48,502个碱基对。通过凝胶过滤从热诱导的溶菌原大肠杆菌CL857 S7中分离出噬菌体。通过苯酚/氯仿提取从纯化的噬菌体中分离出DNA,并透析透析于10mm Tris-HCl(pH7.4)和1mm EDTA。
噬菌体是能够专门攻击和摧毁某些细菌的病毒。尽管它们对抗细菌感染的能力已被人们所知超过 100 年,并且已经进行了一定程度的研究和测试,但直到最近几年,它们的用途才开始受到越来越多的讨论。研究和开发兴趣的重点是噬菌体对缓解日益严重的全球抗生素耐药性问题对人类、动物和环境健康的影响的潜力。噬菌体除了在人类医学中的应用外,在农业和食品工业中对抗细菌病原体方面也有着广泛的应用。但噬菌体制剂在欧盟国家和美国尚未被批准作为药物,在农业和食品工业中可用的产品数量也很少。这就引发了一个与研究和创新政策相关的问题,即阻碍更广泛使用的挑战究竟是科学技术、经济还是主要的法律挑战。为了为德国联邦议院进一步考虑这一重要的未来问题获得平衡的信息基础,德国联邦议院技术评估办公室(TAB)在食品和农业委员会、卫生委员会以及教育、研究和技术评估委员会的倡议下,对噬菌体在各个应用领域的创新潜力以及可能存在的安全和监管问题进行了调查。最终的TAB报告全面概述了噬菌体的当前发展状况和在医学、农业和食品工业中的可能用途,并分析了不同的监管框架。详细介绍并描述了促进和进一步发展噬菌体使用的科学技术、经济、创新政策和法律挑战及行动选择。 TAB报告为德国联邦议院提供了有关该主题的最新且有根据的信息基础,这对于在全球抗生素耐药性问题背景下的研究、卫生、农业和环境政策尤为重要。
在本文最初在线发表的版本中,图 2e 中位点 18 的编辑碱基被标记为 A6 和 A8;它们分别是 A9 和 A11。在补充图 6 中,位点 18 的 x 轴标签从左到右依次为 A2、A3、A4、A6、A8、A16、A17、A19 和 A20;正确的标签为 A5、A6、A7、A9、A11、A19、A20、A22 和 A23。这些错误已在本文的印刷版、PDF 版和 HTML 版中得到更正。
细菌感染病毒,噬菌体是地球上最丰富的生物学实体,经常用作基础研究中的模型系统,并且与诸如噬菌体疗法之类的医学应用越来越重要。一个普遍的需求是量化给定细菌宿主的噬菌体感染性(或宿主对噬菌体的抗性)。但是,量化感染力的当前方法患有低通量或低精度。一种具有对噬菌体相互作用的高通量和高精度定量潜力的方法是生长曲线,其中在存在和不存在噬菌体的情况下,随着时间的流逝,细菌密度随着时间的流逝而测量。最近的工作提出了几种将这些曲线量化为噬菌体感染力度量的方法。然而,对于这些指标如何相互关系或与潜在的噬菌体和细菌性状相关的知之甚少。为了解决这一差距,我们采用噬菌体和细菌种群的生态建模来模拟各种特征值的生长曲线。我们的发现表明,许多生长曲线指标提供了噬菌体感染性的平行度量。信息性指标包括细菌生长曲线的峰值和下降部分,是由潜在的噬菌体和细菌性状之间的相互作用驱动的,并且与常规的噬菌体适应性指标相关。此外,我们还展示了插入性状变化如何改变生长曲线动力学。最后,我们测试了生长曲线对接种密度的敏感性,并评估技术以比较不同细菌宿主的生长曲线。总的来说,我们的发现支持生长曲线的使用,以精确地对微生物科学的噬菌体 - 细菌相互作用进行精确的高通量定量。
NORGEN的纯化技术纯化基于自旋色谱柱色谱法。噬菌体DNA优先纯化从其他细胞成分(例如蛋白质)中纯化,而无需使用苯酚,氯仿或氯化葡萄球菌。此过程的起始材料被阐明了噬菌体上清液,该噬菌体上清液已与液体培养物中的细菌碎片分离。最初,噬菌体颗粒通过提供的裂解缓冲液B通过热和化学裂解过程裂解(请参阅第4页的流程图)。异丙醇被添加到裂解物中,并将溶液加载到自旋柱上。Norgen的自旋柱以取决于离子浓度的方式结合核酸,因此只有DNA才能与柱结合,而大多数RNA和蛋白质在流潮中除去。然后用提供的洗涤溶液A洗涤结合的DNA,以去除剩余的杂质,并用洗脱缓冲液洗脱纯化的总DNA。纯化的总噬菌体DNA是最高的完整性,可用于许多下游应用。