在细菌和其他微生物中繁殖,并在特殊条件下引起裂解。在1917年F.D'RPILL中首先观察到他检测到从同一患者的粪便标本中获得的滤液中从痢疾患者获得的病原体的裂解。d'eRLELL会得出结论,引起裂解的因子是一种病毒,可以通过细菌过滤器,称为该病毒为噬菌体(«饮食细菌»)和现象 - 作为细菌噬菌体。噬菌体大小与其他病毒相似,在20-800 nm之间变化。它们具有线,立方体和精子等形态。e.coli噬菌体已经(t噬菌体)进行了很好的研究。t(键入)组噬菌体由7个成员表示,其中4个成员(T1,T3,T5,T7)和配对3(T2,T4,T6)。配对的T噬菌体,尤其是T2具有复杂的结构。由于与细菌手机噬菌体相互作用的特征,分为有毒和温带。
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 6 月 2 日发布。;https://doi.org/10.1101/2022.08.12.503731 doi:bioRxiv 预印本
摘要:未培养噬菌体对环境的影响取决于其首选的生命周期(溶菌性或溶源性)。然而,我们预测它的能力非常有限。我们旨在通过比较溶菌性和溶源性噬菌体的基因组特征与其宿主的相似性来区分溶菌性和溶源性噬菌体,反映它们的共同进化。我们测试了两种方法:(1)四聚体相对频率的相似性,(2)基于精确的 k = 14 寡核苷酸匹配的无比对比较。首先,我们探索了 5126 种参考细菌宿主菌株和 284 种相关噬菌体,并找到了使用两种基于寡核苷酸的方法区分溶源性和溶菌性噬菌体的近似阈值。对 6482 个质粒的分析揭示了不同宿主属之间以及在某些情况下远距离细菌类群之间水平基因转移的可能性。随后,我们通过实验分析了 138 株肺炎克雷伯菌及其 41 种噬菌体的组合,发现实验室中与这些菌株相互作用次数最多的噬菌体与肺炎克雷伯菌的基因组距离最短。然后,我们将我们的方法应用于来自温泉生物膜的 24 个单细胞,其中包含 41 个未培养的噬菌体-宿主对,结果与在此环境中检测到的噬菌体的溶源生命周期相一致。总之,基于寡核苷酸的基因组分析方法可用于预测 (1) 环境噬菌体的生命周期、(2) 培养物保藏中宿主范围最广的噬菌体,以及 (3) 质粒的潜在水平基因转移。
au:PleaseconfirnheadingLevelsarerePresentedCorrected:CRISPR介导的干扰依赖于指导性CRISPR RNA(CRRNA)和靶核酸之间的互补性,以提供防御噬菌体的防御。噬菌体逃脱了基于CRISPR的免疫力,主要是通过邻接基序(PAM)和种子区域中的突变。然而,包括2类核酸内切酶Cas12a在内的CAS效应子的先前特异性研究表明,单个不匹配的耐受性很高。在噬菌体防御的背景下,尚未对这种不匹配公差的效果进行广泛的研究。在这里,我们测试了针对由Cas12a-CrrNA提供的lambda噬菌体的防御,该噬菌体含有含有先前存在的对基因组DNA中基因组靶标的不匹配。我们发现大多数先前存在的crrna不匹配导致噬菌体逃脱,无论在体外是否不匹配消融cas12a裂解。我们使用高通量测序来检查CRISPR挑战后噬菌体基因组的目标区域。在目标中的所有位置的不匹配均加速了突变噬菌体的出现,其中包括不匹配的不匹配,这些不匹配大大减慢了体外的裂解。出乎意料的是,我们的结果表明,PAM距离区域中存在的错误匹配导致目标的PAM-DISTAL区域中选择突变。体外裂解和噬菌体竞争分析表明,双Pam-Distal错误匹配比种子和Pam-Distal mis-grountes的组合要高得多,从而导致了这种选择。这些结果表明,CAS效应不匹配的耐受性,现有的靶标匹配和裂解位点强烈影响噬菌体的演变。但是,使用CAS9的类似实验并未导致PAM-DISTAL不匹配的出现,这表明切割位置的位置和随后的DNA修复可能会影响目标区域内逃生突变的位置。多种不匹配的CRRNA的表达阻止了新的突变在多个靶向位置产生,从而允许CAS12A不匹配的耐受性提供更强,更长期的protection。
一个多世纪以前,发现了细菌生物技术病毒中的噬菌体,称为噬菌体或噬菌体[1]。从那时起,对噬菌体及其与细菌的相互作用的研究对我们对生物学的理解产生了巨大影响。例如,噬菌体的研究提供了以下证据:DNA是遗传物质[2],建立了遗传密码的三重态[3],并为基因调节提供了许多范式,包括在转录中具有功能相关的创伤的组织,其转录被控制为单位[4]。以噬菌体为中心的研究也是分子生物学的基础。例如,发现细菌编码限制酶,以防止特异性DNA序列的切割来免受噬菌体感染[5]。通过将限制性酶的这种特性与噬菌体T4 DNA连接酶将DNA分子结合在一起的能力,可以为DNA组装创建分子切割和糊状方法。这项技术代表了重组DNA黄金时代的开始,通过允许基因克隆进行功能研究[6]。此外,噬菌体DNA聚合酶对于测序技术的开发至关重要[7,8],最近,对抗的定期散布的短与短质体的重复酶相关蛋白(CRISPR- CAS)系统可以实现基因组编辑的革命[9]。许多其他令人兴奋的发现可能正在等待研究噬菌体的研究 - 细菌相互作用和噬菌体基因组。但是,噬菌体基因组上的大多数蛋白质编码基因仍然具有未知功能,并且与数据库中的其他序列缺乏同源性,因此要求实验方法来揭示基因功能。
抽象的噬菌体和细菌已经获得了保护机制。在这种情况下,本研究的目的是分析从肺炎克雷伯氏菌的21个新型裂解噬菌体中分离出的蛋白质,以寻求针对细菌的防御机制,并确定噬菌体的感染能力。还进行了一项蛋白质组学研究,以研究受噬菌体感染的两种肺炎的临床分离株的防御机制。为此,对21个裂解噬菌体进行了测序并从头组装。宿主范围是在47个肺炎的47个临床同核中确定的,揭示了噬菌体的感染能力可变。基因组测序表明,所有噬菌体都是属于Caudovirale s的裂解噬菌体。噬菌体序列分析表明,蛋白质是在基因组内的功能模块中组织的。Although most of the proteins have unknown func- tions, multiple proteins were associated with defense mechanisms against bacteria, including the restriction-modi fi cation system, the toxin-antitoxin system, evasion of DNA degradation, blocking of host restriction and modi fi cation, the orphan CRISPR-Cas sys- tem, and the anti-CRISPR system.Proteomic study of the phage-host interactions (i.e., between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several defense mechanisms against phage infection (prophage, defense/virulence/resistance, oxidative stress and plasmid proteins)在细菌和噬菌体中的ACR候选者(抗CRISPR蛋白)中。
170 171图1。临时性靶标基因组靶标基因组进行连续编辑a。 ICOMBIBRON示意图:A 172修饰的反龙生成ssDNA,该ssDNA包含供体序列,其与173个噬菌体基因组具有同源性的编辑序列,该基因组在SSB和SSAP复制过程中整合到噬菌体基因组中。RERON 174盒子是从包含逆转录酶(RT)和NCRNA的操纵子表达的。NCRNA的反向175个抄录区域以紫色显示为浅蓝色的供体序列,176编辑位点以橙色显示。第二个操纵子表示Csprect和mutl E32K。b。左:跨lambda噬菌体编辑的噬菌体177基因组(作为所有基因组的百分比)。用正向RT-DNA进行编辑以蓝色显示,紫色为178。在每个点的空心圆中显示三个单独的重复。右:使用179的编辑位点14,126(±SD)的重稳定物明显大于DRT对照的编辑(t检验,180 P = 0.0018)。c。左:在噬菌体T7上编辑的噬菌体基因组在每个位置进行了三个重复,在b中显示181。右:用现场22,872(±SD)的重稳定子进行编辑明显大于使用182 DRT对照的编辑(t检验,p = 0.0094)。d。左:在噬菌体T5上编辑的噬菌体基因组在每个183个位置上进行了三个重复,如b所示。右:用现场27,182(±SD)的重稳定子进行编辑显着高于使用DRT对照的编辑(t检验,p <0.0001)。e。位点30,840(f)(±SD)的Lambda的编辑与185张(±SD)与大肠杆菌SSB或T7 SSB的补充表达进行了比较。SSB 186表达(单向方差分析,p <0.0001,n = 3),大肠杆菌(p = 0.005)和T7(p = <0.0001)187均显着不同,与NO NO SSB条件显着不同(Dunnett's,校正)。f。与大肠杆菌SSB或T7 SSB的补充表达相比,位点11,160(R)188(±SD)的T7编辑。SSB表达(单向方差分析,p <0.0001,n = 3)具有显着的效应,大肠杆菌(P = 0.0002)和T7 190(p = 0.0127)均显着不同,与NO SSB条件显着不同(Dunnett's,更正)。g。示意图说明191编辑噬菌体的积累,并进行了多轮编辑。h。编辑的Lambda Phage的比例192
噬菌体悬浮液:如果排序噬菌体的“活跃培养”,或者仅以这种形式可用,我们的噬菌体作为宿主生长培养基中无细菌裂解物的1 ml部分进行。细菌细胞和碎屑通过离心和随后的过滤在单速用乙酸纤维素注射器过滤器(0.2或0.45 µm孔径)中消除。所有噬菌体库存都经过滴度和斑块形态/斑块纯度的测试。向我们的客户交付的噬菌体悬挂是可以使用的,可以在收件人的实验室中传播,通常效率在1 x 10 8-1 x 10 11 11 pfu/ml(pfu = p laque f laque forming units)。我们实验室对一些更困难的噬菌体商定的最低允许的滴度限制为10 6 pfu/ml。我们不提供噬菌体滴度数据,因为在我们的实验室的测试间隔期间滴度可能会下降。噬菌体应在收到后立即冷却和黑暗。不要在不添加冷冻保护剂的情况下冷冻噬菌体悬浮液。当存储冷却时,大多数噬菌体将保持活跃,而几个月内没有明显的活动损失。但是,DSMZ不能保证在较长的存储期内噬菌体生存,请参阅我们的主页信息。如果添加了冷冻保护剂,例如,无菌甘油的10%(v/v),最终浓度,可以将噬菌体裂解物存储为长期目的。
由于对关键矿物质的需求不断升高和可用矿石的降低,硫化物矿石的经济复苏已成为越来越多的兴趣的话题。生物无用的是使用嗜酸铁和硫酸氧化微生物来促进从原发性硫化物矿石和尾矿中提取碱金属。一个重要的问题限制了生物介绍的使用是由于这些微生物对氯化物的敏感性,因此淡水的可用性。使用盐水耐酸铁和硫氧化微生物将对解决此问题有很大帮助。有三种可能的方法来采购合适的微生物;适应性,基因工程和生物培训,生物镜头显示最大的可能性。生物培训以寻找生物渗透行动的本地生物,已导致研究人员进入世界各地的许多地方,并且在这些研究中尤其感兴趣的是能够耐受盐度的铁和氧化嗜酸菌的分离。
摘要:成簇的、规则间隔的、短回文重复序列 (CRISPR) 和 Cas9 RNA 引导核酸酶的发现为选择性杀死特定种群或物种的细菌提供了前所未有的机会。然而,由于 cas 9 基因构建体无法高效地递送到细菌细胞中,因此 CRISPR-Cas9 在体内清除细菌感染的应用受到了阻碍。在这里,我们使用广宿主范围的 P1 衍生噬菌粒将 CRISPR-Cas9 染色体靶向系统递送到大肠杆菌和引起痢疾的福氏志贺氏菌中,以实现对目标细菌细胞的 DNA 序列特异性杀死。我们表明,辅助 P1 噬菌体 DNA 包装位点 (pac) 的基因改造可显著提高包装噬菌粒的纯度,并改善 Cas9 介导的福氏志贺氏菌细胞的杀灭作用。我们进一步证明,P1 噬菌体颗粒可以使用斑马鱼幼虫感染模型将染色体靶向 cas9 噬菌粒递送到 S. flexneri 体内,从而显著减少细菌负荷并促进宿主存活。我们的研究强调了将基于 P1 噬菌体的递送与 CRISPR 染色体靶向系统相结合以实现 DNA 序列特异性细胞致死率和有效清除细菌感染的潜力。关键词:福氏志贺氏菌、P1 噬菌体、CRISPR-Cas9、抗菌、噬菌粒 ■ 简介