▪ Palmero, M.、Bowler, R.、Gaebler, JP、Leibfried, D. 和 Muga, JG,《保罗阱内混合物种离子链的快速传输》。Phys. Rev. A 90, 053408 (2014)。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
原子和离子的捕获和冷却方法对原子钟产生了革命性的影响,因为它们可以减少甚至消除主要的系统频率偏移 [1]、[2]、[3]。捕获原子/离子光学钟的性能比其前代产品提高了几个数量级,并已成为国家计量实验室研究项目的关键组成部分 [4]、[5]。基于捕获离子的连续运行原子钟已经存在了几十年,但迄今为止仅限于地面应用 [6]。本文介绍了 NASA 的深空原子钟 (DSAC),它于 2019 年发射,成为第一台在太空中运行的捕获离子原子钟 [7]。DSAC 的设计不包括低温技术、灵敏的微波腔或激光器。相反,它在接近室温的温度下运行,使用简单的行波微波元件,并使用等离子体放电深紫外光源。这些元件都具有很高的成熟度和强大的可操作性,使其能够发射到太空并在太空中运行。在地面上,DSAC 展示了 1.5x10 -13 /t 1/2 的短期分数频率稳定度 [8]。在太空中,它运行了 2 年,实现了每秒 1.5x10 -13 的分数频率稳定度,超过一天的平均时间的长期稳定性为 3x10 -15,23 天内的时间偏差仅为 4 纳秒(未消除漂移),估计漂移为每天 3.0(0.7)x10 -16。在目前使用的最稳定的空间时钟中,每个时钟都建立了至少一个数量级的新空间时钟性能标准 [9],[10],[11]。由于对辐射、温度和磁场变化的敏感度低,DSAC 时钟也适用于太空环境。预计这种级别的空间时钟性能将实现单向导航,即在现场测量信号延迟时间,从而实现近实时深空探测器导航 [12 ] 。在本文中,我们将描述 DSAC 在太空中的性能及其环境敏感性、该技术的主要应用以及未来发展方向。
摘要 实现实用量子计算的一个主要障碍是实现可扩展且稳健的高保真纠缠门。为此,量子控制已成为一种必不可少的工具,因为它可以使纠缠相互作用对噪声源具有弹性。然而,考虑到与稳健纠缠相关的工作范围,可能很难为特定需求确定合适的量子控制技术。为此,我们尝试通过提供非详尽的摘要和批判性分析来整合文献。量子控制方法分为两类:将稳健性扩展到 (i) 自旋或 (ii) 运动退相干的方案。我们选择重点研究使用微波和静磁场梯度扩展 σ x ⊗ σ x Mølmer–Sørensen 相互作用。然而,这里讨论的一些技术可能与其他捕获离子架构或物理量子比特实现相关。最后,我们通过结合本文提出的几种量子控制方法,通过实验实现了同时具有对自旋和运动退相干的鲁棒性的概念验证相互作用。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
摘要 — 离子阱量子比特是实用量子计算的领先技术。在这项工作中,我们对离子阱的线性磁带架构进行了架构分析。为了实现我们的研究,我们开发并评估了该架构的映射和调度算法。特别是,我们引入了 TILT,这是一种线性“图灵机式”架构,具有多激光控制“头”,其中线性离子链在激光头下来回移动。我们发现,与同等大小的量子电荷耦合器件 (QCCD) 架构相比,TILT 可以大大减少通信。我们还为 TILT 开发了两种重要的调度启发式方法。第一个启发式方法通过将沿相反方向传输的数据匹配为“反向交换”来减少交换操作的数量,并且还避免了跨头部宽度的最大交换距离,因为最大交换距离使得在一个头部位置调度多次交换变得困难。第二种启发式方法通过将磁带调度到每次移动时可执行操作最多的位置来最小化离子链运动。我们从模拟中提供了应用程序性能结果,这表明 TILT 在一系列 NISQ 应用程序中的成功率可以胜过 QCCD(平均高达 4.35 倍和 1.95 倍)。我们还讨论了使用 TILT 作为构建块来扩展现有的可扩展离子阱量子计算方案。索引术语 — 量子计算、离子阱架构、电路优化
• 利用量子力学结构的新范式(信息是物理的,物理很重要!) • 有望加速解决一系列棘手的计算问题 • 已知用例:化学、材料 + 密码学
我们用电磁捕获的原子离子晶体来表示量子比特或自旋,每个离子内的两个电子能级表现为有效量子比特或自旋 1/2 粒子。电子能级的具体选择取决于原子元素以及用于操纵和测量量子比特状态的所需控制场类型。这些量子比特状态对于执行量子信息处理的最重要特征是 (a) 能级寿命长且表现出出色的相干性,(b) 能级状态具有适当的强光学跃迁到辅助激发态,允许通过光泵浦进行量子比特初始化并通过荧光进行量子比特检测,以及 (c) 量子比特通过可外部控制和门控的相干耦合进行交互。这将原子种类限制为少数元素和量子比特/自旋态,这些元素和量子比特/自旋态要么被编码为具有射频/微波频率分裂的单个外电子原子的 S 1 / 2 超精细或塞曼基态(例如,Be + 、Mg + 、Ca + 、Sr + 、Ba + 、Cd + 、Zn + 、Hg + 、Yb + ),要么被编码为具有光频率分裂的单个或双外电子原子的基态和 D 或 F 亚稳态电子激发态(例如,Ca + 、Sr + 、Ba + 、Yb + 、B + 、Al + 、Ga + 、In + 、Hg + 、Tl + 、Lu + )。某些种类(例如,Ba + 、Lu + 、Yb + )具有足够长的 D 或 F 亚稳态激发态寿命,以在其超精细或塞曼能级中承载量子比特,并具有射频/微波分裂。