量子开关是因果顺序不确定过程的典型例子,据称在量子计量领域的某些特定任务中,它比因果顺序确定的过程具有多种优势。在本文中,我们认为,如果进行更公平的比较,其中一些优势实际上并不成立。为此,我们考虑了一个框架,该框架允许对不同类别的因果顺序不确定过程的性能(由量子 Fisher 信息量化)与因果策略在给定计量任务上的性能进行适当的比较。更一般地说,通过考虑最近提出的具有经典或量子控制因果顺序的电路类别,我们得出了不同的例子,其中因果顺序不确定的过程比因果顺序确定的过程具有(或不具有)优势,从而限定了因果顺序不确定在量子计量方面的兴趣。事实证明,对于一系列示例,已知在物理上可实现的具有因果序量子控制的量子电路类被证明比因果序量子电路以及因果叠加量子电路类具有严格的优势。因此,对此类的考虑提供了新证据,表明在量子计量学中,不确定的因果序策略可以严格胜过确定的因果序策略。
准确描述自然对话中涉及的神经生理活动仍然是一项重大挑战。在本文中,我们探讨了自然对话过程中多模态对话行为与大脑活动之间的关系。由于功能性磁共振成像 (fMRI) 的时间分辨率以及记录的多模态信号的多样性,这具有挑战性。我们使用一个独特的语料库,其中包括在 fMRI 实验中记录的局部大脑活动和行为,当时几名参与者分别与人类和对话机器人进行自然对话。该语料库包括 fMRI 反应以及由同步原始音频及其记录、视频和眼动追踪记录组成的对话信号。所提出的方法包括第一步,从功能上明确的大脑区域中提取离散的神经生理时间序列,以及描述特定行为的行为时间序列。然后,应用机器学习模型根据提取的行为特征预测神经生理时间序列。结果显示,预测分数很有希望,并且在两种情况下(即人与人对话和人与机器人对话)的行为和功能性大脑区域活动之间存在特定的因果关系。索引词:多模态信号处理、自然对话、机器学习、人与人、人与机交互、功能性磁共振成像
在时空中,事件 A 和 B 可以有三种因果关系:A 先于 B ,B 先于 A ,或者 A 和 B 有因果分离,即它们位于一个类空区间。量子力学允许存在与这些情况都不对应的因果结构。启发式地,这可以描绘为将 A 和 B 之间的顺序置于量子叠加中。更准确地说,已经提出了几种使用“过程矩阵”或“量子开关”来实现不确定因果顺序的方法 [1– 6]。虽然这些方法在数学上并不严格等价,但它们都支持一个基本思想:不确定因果顺序本质上是一种量子现象,它为迄今为止主要在时空理论中探索的概念提供了新的启示。最近,在几种量子开关的实现中已经通过实验观察到了这种现象 [7–12]。为了准确衡量量子理论为因果关系研究带来的新元素,可以将因果序的量子控制视为提供非经典通信优势的一种资源,即量子开关中的两个噪声信道可以比任何单个信道传输更多的信息 [13]。这种方法的好处是可以立即阐明量子开关的物理意义,但它依赖于一个目前尚未解决的问题,即任何局部方是否可以操作性地实施这种量子控制 [14]。在本文中,我们假设实证研究已经给出了一个积极的启发式方法:通过量子开关对因果序的量子控制已经通过实验获得。接下来,我们努力从理论上更好地理解此类设置所展示的优势。特别地,一个长期存在的问题涉及这种优势的起源:为了否认量子开关是一个独立的资源,有人认为,两个信道的单程量子叠加,在没有不确定因果顺序的情况下,已经导致了类似的结果[15,16]。在第二部分介绍基本的数学概念之后,我们探讨了这种非因果顺序的有争议的起源。
。CC-BY 4.0国际许可证。根据作者/筹款人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年1月19日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.19.633761 doi:Biorxiv Preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月17日。 https://doi.org/10.1101/2025.01.17.633619 doi:biorxiv preprint
Cavique(2024)的文章,“因果关系在人工智能中的影响”,为Causalai的重要性提出了一个令人信服的案例。通过关注因果关系的关系而不是仅仅相关性,可以为更透明,公平和可靠的AI系统提供途径。Cavique认为,与负责的AI,公平AI和可解释的AI相比,Causalai是最不受欢迎的方法,这在很大程度上是由于其科学严格的严格性和减少偏见的潜力。,尽管有希望,但Causalai并非没有挑战。该评论旨在评估Cavique提出的Causalai的某些局限性和潜在批评,认为尽管它具有实质性的承诺,但其实施和实际应用可能比作者建议的更为复杂,并且充满了困境。
简介:先前的研究报告了三甲胺N-氧化物(TMAO)和帕金森氏病(PD)之间的潜在关联。这项研究的目的是检查循环TMAO及其前体的水平与使用两样本的孟德尔随机化(MR)方法之间的潜在关系。材料和方法:我们从三个全基因组社会研究(国际帕金森氏病基因组学,帕金森氏病,帕金森的研究:有组织的遗传学计划和Genepd和Finngen)中汇总了数据,以提取与单核苷酸多态性(SNP)(SNP)与TMAO,Carnitine,Carnitine和Betnitine的循环浓度相关。这些SNP被用作随机效应模型中的仪器变量,以评估TMAO循环浓度及其前体的循环浓度与帕金森氏病的风险,并通过估计的优势比与伴随的95%置信区间来评估循环变量。主要分析采用了反向差异加权(IVW)方法,该方法与MR-Egger回归分析相辅相成。结果:使用IVW方法进行的分析,该方法汇总了三个数据库的数据,并未显示循环浓度TMAO及其前体之间的因果关系,并且PD的风险(P> 0.05)。MR-Egger分析的结果进一步证实了这一发现。灵敏度分析表明,结果不受任何偏见的影响,异质性测试表明SNP之间没有显着差异。有必要进行进一步的调查,以确定这种关联是否确实存在。结论:这项研究没有发现循环浓度或其原始物质与PD风险之间的因果关系的任何结论性证据。
量子信息和时空物理学界所采用的因果关系概念是截然不同的。虽然经验告诉我们,这些概念在物理实验中以兼容的方式一起发挥作用,但它们的一般相互作用在理论上却鲜为人知。因此,我们开发了一个理论框架,将这两个因果关系概念联系起来,同时也清楚地区分它们。该框架描述了通过反馈回路进行的量子操作组合,以及将由此产生的可能循环的信息理论结构嵌入非循环时空结构中。然后,相对论因果关系(禁止超光速通信)作为这两个结构之间的图论兼容性条件。通过证明量子信息界广泛研究的不确定因果顺序 (ICO) 过程可以在我们的框架内表述,我们阐明了不确定因果关系和循环因果关系之间的联系,以及有关它们的物理性的问题。具体来说,有几项实验声称在闵可夫斯基时空中实现了 ICO 过程,这提出了一个明显的理论悖论:不确定的信息论因果结构如何与确定的时空结构相一致?我们通过不定理来解决这个问题,表明作为相对论因果关系的结果,(a) ICO 过程的实现必然涉及时空中系统的非局部化,(b) 仍然可以在更细粒度的层面上用确定的、非循环的因果顺序过程来解释。这些结果是通过引入细粒度概念实现的,细粒度概念允许在不同细节层面上分析因果结构。这完全解决了明显的悖论,并对 ICO 实验的物理解释具有重要意义。我们的工作还阐明了时空中量子信息处理的极限,并对固定时空范围内外不确定因果关系的操作意义提供了具体的见解。
量子电路的标准模型假设操作以固定的连续“因果”顺序应用。近年来,放宽这一限制以获得因果不确定计算的可能性引起了广泛关注。例如,量子开关使用量子系统来连贯地控制操作顺序。已经证明了几种临时的计算和信息理论优势,这引发了这样一个问题:是否可以在更统一的复杂性理论框架中获得优势。在本文中,我们通过研究一般高阶量子计算下布尔函数的查询复杂性来解决这个问题。为此,我们将查询复杂性的框架从量子电路推广到量子超图,以便在平等的基础上比较不同的模型。我们表明,最近引入的具有因果顺序量子控制的量子电路类无法降低查询复杂度,并且因果不确定超级映射产生的任何潜在优势都可以用多项式方法限制,就像量子电路的情况一样。尽管如此,我们发现,当利用因果不确定超级映射时,使用两个查询计算某些函数的最小误差严格较低。
DALLIAE项目旨在提出一种基于因果(贝叶斯)图[4,5]的通用方法,以检测光束线实验期间的异常及其可解释性。在因果图中,我们将特别关注定向的无环图(DAG)[1]。目标是引入层次因果图,并利用替代因果模型的概念来识别最相关的简单(单参数)和关节(Pa-Rameter组合)因果关系,这些因果链接表征了异常原因的原因。这种方法是必不可少的,这是由于仪器的多尺度性质和完整的梁线,这需要对不同尺度上的因果关系有细微的理解。我们还将专注于量化与已确定的因果链接相关的不确定性,以确保其相关性。由于各种工具,参数[1,3],在实验[2]中的修改,关节效应的组合数量以及数据中异常代表性不足,因此对因果关系的搜索更加困难。在实践中,此方法将限制主要X射线或激光器仪器的操作异常的影响,以了解光束特性与光束线光学元件的物理参数之间的联系。可以随着时间的推移观察到突然的或慢的异常/变化,例如聚焦畸变直接影响测量的质量和速度。尽管AI文献中有许多异常检测方法,但它们通常基于相关性,这在传达因果关系方面无效。因此,理解和征询这些故障的原因以及与最佳测量链性能的偏差对于快速响应和梁线或激光器操作的最大可靠性至关重要。因此,该项目的目的是根据因果图提出可解释的AI,以支持光束线操作员和科学家。任务是开发基于因果关系的模型来确定涉及异常的传感器参数。该方法将补充在合适的时间范围内进行纠正措施的诊断工具。因此,可以将工作分为以下任务: