金属添加剂制造(AM)过程使用高功率激光器快速融化并固化金属粉末为复杂的3D形状,但不幸的是,快速固化过程通常会导致随机缺陷形成和非平衡微结构。充分了解AM过程并确保需要高质量的无缺陷制造过程,新型的高速传感方法可以捕获与AM过程相关的关键物理现象,需要高分辨率。约翰·霍普金斯大学应用物理实验室(APL)的一个团队正在开发能够测量沿激光路径超过50 kHz的新型光谱技术,以帮助了解不同激光输入下的材料如何形成。团队还正在开发机器学习工具来解释这些信号,从而揭示了传感器数据或Physi Cal Cal Postmortem检查结果的特征和趋势。
在新南威尔士州许多地区,由于有利的生长条件,草燃料负荷仍高于正常水平。澳大利亚农业和资源经济学和科学局报告说,新南威尔士州的牧场增长远高于平均水平,有些地区的水平极高。尽管目前没有草,但是春季期间温度高于平均温度可能会导致这些草的快速固化(干燥)。高草燃料负荷的组合以及在春末和初夏固化的潜力,构成了快速移动,强烈的草大火的重大风险。风险在新南威尔士州北部特别明显,那里的春季温度相对温暖。如果在高草燃料负荷的地区进行大量草固化,则这些区域可能在此期间构成高于正常风险。
四糖4,4'-二氨基甲苯甲烷(TGDDM)环氧树脂。这些树脂的热分化是出色的。他们的弱点包括高水分吸收,低断裂韧性以及3%或更低的突破。1双苯酚A(DGEBA)的二甘油乙醚也常用。环氧树脂用交联剂固化,其中胺交联剂至少具有两个反应性胺基团,它们交联环氧化物树脂。可以根据所用的固化剂,选择适当的时间和固化温度以及使用以最大程度地减少复合材料中的空隙的存在来改变固化的环氧树脂的机械性能。通常使用的固化剂是二氨基二苯基磺基(DDS),三乙二烯四矿(TETA),二杨酰胺(Dicyandiamide(dicy),苯甲酰二甲基胺(BDMA)和硼龙三甲基胺(Boron Trifluoride)。
AIT 的科学家们创造了 ESP7660-SC 和 ESP8660-SC 系列等 DAF,以满足市场对更高生产率的需求,这些 DAF 可在无压力下更快地固化,在高达 250°C 的温度下实现更快的引线键合,并在高达 200°C 的温度下进行成型操作。AIT 的 ESP7455-HF 和 ESP8450-HF 还利用聚合物分子工程吸收键合界面应力,提高了堆叠芯片大型设备的可靠性。此外,这些薄膜在粘合和固化之前还能提高薄膜的完整性。凭借这些新进展,AIT 率先为最大的 450 毫米晶圆尺寸生产出 8-10 微米的绝缘 DAF。对于需要银填充导电 DAF 的功率器件,AIT 的 ESP8660-HK 已被证明在 20 微米的厚度下效果最佳。
摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
关键词:非光定义聚酰亚胺、固化、C&D Track、CascadeTek 烤箱、互连和 GaAs。摘要 化合物半导体行业使用多种材料来制造用于金属互连的层间电介质薄膜。这些材料包括 BCB、聚酰亚胺和硅电介质。在本文中,我们讨论了在 BAE 系统微电子中心 (MEC) 制造工厂的新加工设备上进行的聚酰亚胺薄膜工艺鉴定。这项工作包括对用于聚酰亚胺涂层的新涂层轨道和用于固化聚酰亚胺涂层薄膜的新固化烤箱的鉴定。引言聚酰亚胺薄膜具有低介电常数、高模量和相对较高的热稳定性、化学稳定性和机械稳定性 1, 2 。这些特性使其成为众多半导体和微电子处理应用的有吸引力的候选者。这些应用包括使用聚酰亚胺薄膜作为倒装芯片封装中的钝化层、印刷电路板的基板、多芯片模块沉积电介质封装中的基板、多层金属互连中的电介质夹层等。3 本文讨论了将聚酰亚胺薄膜用于金属互连,因为其介电常数低,可以降低寄生电容。金属互连将集成电路 (IC) 的各个部分电连接起来。互连结构对于现代 IC 制造至关重要。图 1 显示了典型互连结构的横截面。互连由交替的金属层和电介质层制成。这些层经过图案化,形成连接电路 1、2、4 的各个组件的电通路。
树脂和硬化剂应充分混合,直至形成均匀的混合物。ARALDITE ® 2019 以带有混合器的筒装形式提供,可借助 Huntsman Advanced Materials 推荐的工具作为即用型粘合剂涂抹。粘合剂的应用用抹刀将树脂/硬化剂混合物涂抹在预处理过的干燥接头表面。0.05 至 0.10 毫米厚的粘合剂层通常可使接头获得最大的搭接剪切强度。如果可能,应在两种基材上都涂抹粘合剂,并且在涂抹粘合剂后立即组装和夹紧接头组件。对于粘合线厚度低于 0.5 毫米的粘合剂,必须在涂抹粘合剂后 60 分钟内组装组件,对于粘合线厚度较大的粘合剂,必须在涂抹粘合剂后 30 分钟内组装组件。整个接头区域的均匀接触压力将确保最佳固化。机械加工专业公司已经开发出计量、混合和摊铺设备,可实现粘合剂的批量加工。我们很乐意为客户提供建议,帮助他们选择适合其特定需求的设备。设备维护所有工具都应在粘合剂残留物固化之前进行清洁。清除固化残留物是一项困难且耗时的操作。如果使用丙酮等溶剂进行清洁,操作人员应采取适当的预防措施,此外,还应避免皮肤和眼睛接触。
摘要 — 计算建模通常用于设计和优化电子封装,以提高性能和可靠性。影响计算模型准确性的因素之一是材料性质的准确性。特别是微机电系统传感器,通常对封装中材料性质的细微变化极为敏感。因此,即使由于样品制备方法或测试技术不同而导致的材料特性测量值出现微小变化,也会影响用于设计或分析传感器性能的计算模型的准确性。对于需要固化的材料,材料特性的挑战更大。例如,芯片粘接聚合物在制造过程中具有严格的固化曲线要求。这种固化条件通常很难在实验室中复制,并且用于材料特性分析的样品不一定代表最终产品中的实际组件。本研究调查了温度固化曲线、固化过程中施加的压力以及样品制备技术等参数对两种芯片粘接弹性体随温度变化的热机械性能的影响。使用动态机械分析和热机械分析等一系列技术测量芯片粘接材料的机械性能,包括弹性模量 (E)、热膨胀系数和玻璃化转变温度。分析针对与典型传感器应用相对应的宽温度范围进行。结果表明,样品制备和表征技术对测量有相当大的影响,从而通过计算建模得出不同的 MEMS 传感器性能预测。
了解基于沥青乳液的冷倒入(CIR)混合物的强度发展需要对感冒混合物的物理化学方面有全面的理解,包括沥青乳液特征及其与聚集物的相互作用。冷水放置的再生(CIR)混合物的固化通常被认为是时间依赖性的,并且由于水的存在而延长。这种时间的演变提出了挑战,尤其是在弥合实验室固化条件和现实世界中场景之间的差异时,这可能会导致规范要求,这些要求并不总是与实际现实相符。这项研究研究了与将热混合沥青(HMA)放在CIR层顶部相关的热和压实的影响。该研究旨在评估CIR层中传热的影响及其随后与覆盖HMA的相互作用。通过传热分析和从现场结构的CIR层提取平板的组合,无论是在放置沥青覆盖层的放置之前和之后,都已经分析了使用伽马式台式台式设备的压实曲线。这种方法使我们能够检查传热及其对固化过程的影响以及冷回收层的整体性能和完整性。这项研究的发现通过研究热,压实和材料特性之间的相互作用,为优化CIR固化过程提供了宝贵的见解。这项研究促进了对CIR应用中传热动态的了解,并为改善建筑实践带来了实际意义。