摘要 - 图像的细分在医疗,军事,监视等领域都有广泛的应用。这项工作段用于检测大脑中肿瘤的医学共振图像,其中工作中的三个部分都在图像中识别出三个部分。首先是头骨,第二是大脑,第三是肿瘤。介绍的论文包括以无监督的方式对图像分割的描述,其中建议的模型在没有任何训练的情况下确定图像的所有段。在这里,Wiener Filter通过从图像矩阵中删除不需要的信息来预处理输入图像。过滤的图像然后以智能水滴(IWD)遗传算法传递,用于查找图像段的代表性像素值集。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。 实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。 建议的模型评估了平均精度值0.98和平均准确度为96%。 因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。建议的模型评估了平均精度值0.98和平均准确度为96%。因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。
1 简介 脑肿瘤是一团异常细胞。它有两种类型:恶性和良性。脑肿瘤症状可以是一般的,也可以是预先定义的。一般症状是由肿瘤压迫大脑或脊髓引起的。当大脑的某个部分由于肿瘤而无法正常运作时,就会出现预先定义的症状。研究人员应用不同的成像方式从几个医学成像系统中检测解剖结构 [1, 2]。脑肿瘤分割已被用于定义肿瘤区域,以帮助诊断疾病和选择治疗疾病的最佳方法。它是一种将肿瘤的一部分从整个图像中分离出来的工具。手动肿瘤分割方法耗时耗力,因此也会导致疾病的误诊。脑肿瘤分割方法分为阈值和区域生长等几种类型 [3, 4]。医学图像分割是疾病诊断的重要阶段。医学图像分割的目的是检测所需区域,以帮助专家更好地诊断疾病。它根据确定性描述将图像划分为多个区域,例如医学应用中的身体器官分割 [5]。分割是图像处理的重要工具。图像分割用于将图像分割为不同数量的对象和离散区域。图像分割的结果是组成整个图像的一组部分或从图像中截取的一组线。可以实施不同的方法来划分图像。分割方法包括阈值、聚类、基于边缘、基于区域、基于图形、分水岭和活动轮廓分割技术 [6]。医学图像分类是图像分类领域最重大的难题之一。它旨在将医学图像分为几类,以帮助专家进行疾病诊断或进一步研究。总体而言,医学图像分类分为两个步骤:特征提取步骤和分类步骤。在分类问题中,使用算法将测试数据准确地分类为预定义的类别。常见的分类算法类型有线性分类器、支持向量机、决策树和随机森林分类器 [7]。
图像技术越来越多地应用于帮助医生提高肿瘤诊断的准确率以及帮助研究人员研究肿瘤特性,图像分割技术是图像处理的重要组成部分。本文综述了人工神经网络在图像分割方面的研究进展,主要包括BP网络和卷积神经网络(CNN)。目前已经建立了许多不同结构的CNN模型,如监督学习CNN和非监督学习CNN,并成功地应用于肿瘤图像的分割。结果表明,人工网络的应用可以提高肿瘤图像分割的效率和准确率。但人工神经网络图像分割仍然存在一些不足,如应寻找新的方法来降低构建标记数据集的成本;应建立效率更高的新型人工网络等。
深度神经网络是生物医学图像分割的有力工具。这些模型通常经过严格监督训练,依赖于图像对和相应的体素级标签。然而,在大量情况下获得解剖区域的分割成本可能非常高。因此,迫切需要基于深度学习的分割工具,这些工具不需要严格监督并且可以不断适应。在本文中,我们提出了一种将分割视为离散表示学习问题的新视角,并提出了一种灵活且自适应的变分自动编码器分割策略。我们的方法称为分割自动编码器 (SAE),它利用所有可用的未标记扫描,并且仅需要分割先验,它可以是单个未配对的分割图像。在实验中,我们将 SAE 应用于脑部 MRI 扫描。我们的结果表明,SAE 可以产生高质量的分割,尤其是当先验良好时。我们证明马尔可夫随机场先验可以产生比空间独立先验更好的结果。我们的代码可在 https://github.com/evanmy/sae 免费获取。关键词:图像分割、变分自动编码器
在测试时将源模型调整到目标数据分布是解决数据移位问题的有效方法。以前的方法通过使用熵最小化或正则化等技术使模型适应目标分布来解决此问题。在这些方法中,模型仍然通过对完整测试数据分布使用无监督损失的反向传播进行更新。在现实世界的临床环境中,由于隐私问题和部署时缺乏计算资源,动态地将模型调整到新的测试图像并避免在推理过程中更新模型更有意义。为此,我们提出了一种新的设置 - 动态自适应,它是零样本和偶发的(即,模型一次适应单个图像,并且在测试时不执行任何反向传播)。为了实现这一点,我们提出了一个名为 Adaptive UNet 的新框架,其中每个卷积块都配备了一个自适应批量归一化层,以根据域代码调整特征。域代码是使用专门针对医学图像进行训练的域先验生成器生成的。在测试时,模型仅接收新的测试图像并生成域代码以根据测试数据实例调整源模型的特征。我们验证了 2D 和 3D 数据分布偏移的性能,与以前的测试时自适应方法相比,我们在测试时不执行反向传播的情况下获得了更好的性能。关键词:测试时自适应、医学图像分割。
平滑标签分配已成为训练犯罪模型的流行策略。然而,大多数现有方法通常是为分类任务而设计的,忽略了密集的预测问题的潜在属性,例如医疗图像分割。首先,这些策略通常忽略给定像素及其邻居之间的空间关系。和第二,与每个标签相关的图像上下文都被忽略了,这可以传达有关分割掩模中潜在错误或歧义的重要信息。为了解决这些局限性,我们在这项工作中提出了Geodesic标签平滑(GEOLS),该工作通过利用图像的地理距离变换来将图像信息整合到标签平滑过程中。作为生成的标签分配基于计算的测量图,软标签中的类别关系是更好的建模,因为它考虑了两个或多个类别的边界的图像梯度。此外,空间像素的关系是在地球差异转换中捕获的,比诉诸于像素之间的欧几里得距离更丰富的信息。我们在两个公开可用的分割基准标记上评估了我们的方法,并将它们与流行的分割损失函数进行比较,该功能直接修改标准硬牌分配。所提出的测量标签的平滑性提高了现有软标记策略的分割精度,证明将图像信息整合到标签平滑过程中的有效性。重现我们的结果的代码可在以下网址获得:https://github.com/adigasu/geols关键字:图像分割,地球距离,标签平滑
扩散概率模型 (DPM) 近期成为计算机视觉领域最热门的话题之一。其图像生成应用(如 Imagen、潜在扩散模型和稳定扩散)已展示出令人印象深刻的生成能力,引发了社区的广泛讨论。此外,许多近期研究发现 DPM 可用于多种其他视觉任务,包括图像去模糊、超分辨率和异常检测。受 DPM 成功的启发,我们提出了 MedSegDiff,这是第一个基于 DPM 的用于一般医学图像分割任务的模型。为了增强用于医学图像分割的 DPM 中的逐步区域注意力,我们提出了动态条件编码,它为每个采样步骤建立状态自适应条件。此外,我们提出了特征频率解析器 (FF-Parser) 来消除此过程中高频噪声成分的负面影响。我们在三种不同图像模态的医学分割任务上验证了 MedSegDiff 的有效性,包括眼底图像上的视杯分割、MRI 图像上的脑肿瘤分割和超声图像上的甲状腺结节分割。我们的实验结果表明,MedSegDiff 的表现比最先进的 (SOTA) 方法有相当大的性能差距,证明了所提模型的泛化和有效性。关键词:扩散概率模型、医学图像分割、脑肿瘤、视杯、甲状腺结节
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
摘要——我们提出了 Q-Seg,这是一种基于量子退火的新型无监督图像分割方法,专为现有量子硬件量身定制。我们将逐像素分割问题(吸收图像的光谱和空间信息)公式化为图形切割优化任务。我们的方法有效地利用了 D-Wave Advantage 设备的互连量子位拓扑,与现有量子方法相比具有出色的可扩展性,并且优于几种经过测试的最先进的经典方法。对合成数据集的实证评估表明,Q-Seg 的运行时性能优于最先进的经典优化器 Gurobi。该方法还在地球观测图像分割上进行了测试,这是一个具有噪声和不可靠注释的关键领域。在嘈杂的中尺度量子时代,与 Segment Anything 等先进技术相比,Q-Seg 成为现实世界应用的可靠竞争者。因此,Q-Seg 使用可用的量子硬件提供了一种有前途的解决方案,特别是在受到有限标记数据和高效计算运行时间的需求限制的情况下。
量子计算固有的高并行性和纠缠特性使得量子图像处理技术成为人们关注的焦点。图像处理中最广泛使用的技术之一是分割,其最基本的形式之一可以使用阈值算法来实现。本文提出了一种容错量子双阈值算法。该算法基于 Clifferd+T 门。由于 T 门增加了容错能力,但代价是成本比其他量子门高得多,因此我们的重点是减少 T 门的数量。这使得最先进的双阈值分割电路能够增加噪声容忍度、计算成本降低和容错能力。由于双阈值图像分割涉及比较操作,因此作为这项工作的一部分,我们实现了两个比较器电路。这些电路优化了 T 计数和 T 深度指标,使其与文献中目前可用的最佳电路比较器相比更胜一筹。
