1 简介 脑肿瘤是一团异常细胞。它有两种类型:恶性和良性。脑肿瘤症状可以是一般的,也可以是预先定义的。一般症状是由肿瘤压迫大脑或脊髓引起的。当大脑的某个部分由于肿瘤而无法正常运作时,就会出现预先定义的症状。研究人员应用不同的成像方式从几个医学成像系统中检测解剖结构 [1, 2]。脑肿瘤分割已被用于定义肿瘤区域,以帮助诊断疾病和选择治疗疾病的最佳方法。它是一种将肿瘤的一部分从整个图像中分离出来的工具。手动肿瘤分割方法耗时耗力,因此也会导致疾病的误诊。脑肿瘤分割方法分为阈值和区域生长等几种类型 [3, 4]。医学图像分割是疾病诊断的重要阶段。医学图像分割的目的是检测所需区域,以帮助专家更好地诊断疾病。它根据确定性描述将图像划分为多个区域,例如医学应用中的身体器官分割 [5]。分割是图像处理的重要工具。图像分割用于将图像分割为不同数量的对象和离散区域。图像分割的结果是组成整个图像的一组部分或从图像中截取的一组线。可以实施不同的方法来划分图像。分割方法包括阈值、聚类、基于边缘、基于区域、基于图形、分水岭和活动轮廓分割技术 [6]。医学图像分类是图像分类领域最重大的难题之一。它旨在将医学图像分为几类,以帮助专家进行疾病诊断或进一步研究。总体而言,医学图像分类分为两个步骤:特征提取步骤和分类步骤。在分类问题中,使用算法将测试数据准确地分类为预定义的类别。常见的分类算法类型有线性分类器、支持向量机、决策树和随机森林分类器 [7]。
主要关键词