由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
推荐引用 推荐引用 G., Mohanapriya;Muthukumar S.;Santhosh Kumar S.;和 Shanmugapriya MM。“用于医学图像处理的卡尔曼布西滤波神经模糊图像去噪。”中智集合与系统 70, 1 (2024)。https://digitalrepository.unm.edu/nss_journal/vol70/iss1/19
量子图像处理 (QIP) 是一个旨在利用量子计算的优势来处理和分析图像的领域。然而,QIP 面临两个挑战:量子比特的限制和量子机器中噪声的存在。在本研究中,我们提出了一种新方法来解决 QIP 中的噪声问题。通过训练和使用机器学习模型来识别和校正量子处理图像中的噪声,我们可以补偿机器引起的噪声并以更高的效率检索类似于传统计算机执行的处理结果。该模型通过学习由现有处理图像和来自开放获取数据集的量子处理图像组成的数据集进行训练。该模型将能够为我们提供每个像素的置信度及其潜在的原始值。为了评估模型在补偿 QIP 中的损失和退相干方面的准确性,我们使用三个指标对其进行评估:峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和平均意见分数 (MOS)。此外,我们还讨论了我们的模型在各个领域的适用性以及与其他方法相比的成本效益。
b'量子图像\xef\xac\x81滤波是对经典图像\xef\xac\x81滤波算法的扩展,主要研究基于量子特性的图像\xef\xac\x81滤波模型。现有的量子图像\xef\xac\x81滤波侧重于噪声检测和噪声抑制,忽略了\xef\xac\x80滤波对图像边界的影响。本文提出了一种新的量子图像\xef\xac\x81滤波算法,实现了K近邻均值\xef\xac\x81滤波任务,在抑制噪声的同时,可以达到边界保持的目的。主要工作包括:提出一种新的用于计算两个非负整数之差绝对值的量子计算模块,从而构建了距离计算模块的量子电路,用于计算邻域像素与中心像素的灰度距离;改进现有的量子排序模块,以距离作为排序条件对邻域像素进行排序,从而构建了K近邻提取模块的量子电路;设计了K近邻均值计算模块的量子电路,用于计算选取的邻域像素的灰度均值;\xef\xac\x81最后,构建了所提量子图像\xef\xac\x81过滤算法的完整量子电路,并进行了图像去噪仿真实验。相关实验指标表明,量子图像K近邻均值\xef\xac\x81滤波算法对图像噪声抑制具有与经典K近邻均值\xef\xac\x80滤波算法相同的效果,但该方法的时间复杂度由经典算法的O 2 2 n降低为O n 2 + q 2 。