茶是印度最重要的饮料之一。它是第一大外汇收入来源。印度是世界上最大的茶叶生产国。印度的阿萨姆邦、梅加拉亚邦、特里普拉邦、北孟加拉邦(大吉岭)和锡金邦对该国的茶叶总产量贡献巨大。除此之外,印度南部的泰米尔纳德邦、卡纳塔克邦和喀拉拉邦也为茶叶生产做出了贡献。过去几年,人们发现茶产业正在失去立足之地。这主要是因为生产结构错误、由于生产成本高而无法与其他茶叶生产国竞争、小农户组织化、加工阶段的质量控制不佳以及更重要的害虫和疾病侵扰。遥感和 GIS 技术已被有效用于监测水稻、小麦等多种一年生作物。因此,开发一种使用遥感和 GIS 监测茶园的方法已成为迫切需要。之前缺乏使用遥感监测茶叶的研究,这为开发一种方法提供了想法,该方法可以帮助监测种植园的生长并在需要时采取有效措施。在本研究中,尝试使用遥感图像的纹理和色调变化来评估茶树的健康状况。应用灰度共生矩阵 (GLCM) 技术将茶斑分为健康、中度健康和患病茶。使用纹理和分类图像来描绘患病斑块。得出了健康、中度健康和患病茶的百分比。观察发现,2001 年 12 月的 LANDSAT 图像显示健康茶树的面积为 60.4%,中度感染茶树的面积为 23.6%,患病茶树的面积为 16.2%。对于 2004 年 2 月的 LISS III 图像,发现健康茶树的面积为 43.9%,中度感染茶树的面积为 36.8%,患病茶树的面积为 19.3%。同样,对于 2004 年 6 月的 ASTER 图像,发现健康茶树的面积为 24.9%,中度健康茶树的面积为 50.1%,患病茶树的面积为 25.1%。最后将结果与地面叶面积指数 (LAI) 和产量进行了比较。因此,这里尝试的纹理分析和色调变化可以在识别和检测茶园中的病斑方面发挥重要作用。这项研究表明,4 月、6 月和 8 月基于 MODIS 的 NDVI 与庄园层面的茶叶产量有显著相关性。为进一步检验 MODIS 得出的 NDVI 是否与 LAI 相关,建立了一个经验方程,结果表明茶叶的 LAI 与 NDVI 具有显著的线性关系 (R 2 =0.36)。然而,研究发现,仅凭不同时间段的 NDVI 观测结果无法解释茶叶产量的差异。这表明茶叶产量的统计模型似乎并不令人鼓舞。
b非洲可持续农业研究所(ASARI)Mohammad VI理工大学(UM6P),Laayoune,摩洛哥C C C型化学系,沙特国王大学,里亚德大学11451年,沙特阿拉伯,阿拉伯人11451 Sheffield,S1 3JD,英国,在这项工作中,纯和MG-CU共掺杂的氧化锌薄膜都是由Sol-Gel Spin涂层技术制备的。微观玻璃基板用于合成薄膜。通过X射线光谱(XRD),光致发光光谱(PL),扫描电子显微镜(SEM),紫外线可见光谱(UV-VIS)和能量分散X射线分析(EDX)检查薄膜。XRD揭示了膜的六边形Wurtzite阶段。对于纯和MG-CU共掺杂的ZnO,观察到的晶粒尺寸分别为23.34 nm至15.94 nm。SEM图像显示了晶粒尺寸的增加,并通过MG-CU共掺杂表面平滑。通过EDX分析证实了ZnO纳米膜中Mg和Cu的存在。紫外线分析显示,掺杂的透射百分比增加。TAUC关系用于估计样品的带隙,并观察到带隙的显着转移。光致发光图显示出更大的发射和掺杂的表面缺陷。可见的光谱完全被低水平的发射覆盖。(2024年7月1日收到; 2024年10月8日接受)关键字:掺杂;传播;纳米颗粒;光致发光1。[3,4]。引言Nano材料有可能通过提高能源转换,存储和传输的效率来彻底改变能源领域。纳米材料可以设计为具有独特且通常是出乎意料的特性,这些特性在散装材料中没有看到,这使得它们对能源应用特别有希望。在当今时代,纳米赛车在舒适人类的能源生产和分配方面做出了巨大的改进。现代技术进步,最终要求更有效的物理和化学技术来开发和生产高级系统,以及不同形式的能源的转换。尽管有一个事实,即尚未耗尽全球化石资产,但是我们目前使用的不同形式的能源的不适当模式的破坏性健康,社会和生态效应是显而易见的[1,2]。能源生产的最大规模替代品以维持和改善由于人口增长和全球化的生命标准,并改善了我们的生活标准素。似乎很可能会增加温室气体的排放,并在未来50年中导致未来的全球变暖。能源与气候变化之间的联系强调了迫切需要过渡到更可持续和弹性的能源系统,该系统可以支持经济发展并改善人民和地球的福祉。这需要政府,企业和个人的共同努力,以优先考虑和投资清洁能源技术和实践,并减少经济各个部门的温室气体排放。
光电设备是基于光电转换效应制造的,该效应是现代光电技术和微电子技术技术的开发研究领域[1]。在21世纪,全球光电设备制造业已取得了快速发展,而光电设备的市场逐年增长。光电设备被广泛用于各种场,例如光学显示,有机太阳能电池,激光和波导。它们是信息技术的重要组成部分[2,3]。为了扩大应用程序方案并提高光电设备的性能,许多学者已经在相关领域进行了研究。本期包括12篇论文,这些论文涉及光电设备算法,材料和结构中的各种挑战和机遇。例如,在光学显示的字段中,可以通过优化算法来改善电子纸的响应时间和亮度[4]。在太阳能电池和波导的场中,可以通过设计新的光电材料和设备结构来改善太阳能电池和波导传输距离的转换率[5,6]。本期特刊的最新研究进展如下。电子纸是通过反射显示图像显示的新设备,这是光电设备的重要分支[7]。最广泛使用的电子纸是电泳显示(EPD)。修饰的蓝色颗粒具有较高的Zeta电位和电泳迁移率。他等人。目前,将离子液体用作电泳颗粒修饰的电荷控制剂,并将高电离1-丁基1-丁基-1-甲基磷脂单离子液体液体移植到杯赛上。然后,成功制备了蓝色的电泳颗粒[8]。制备过程很简单,并且生产成本很低,这有助于实现丰富的EPD颜色显示。此外,算法的优化也可以用于提高EPDS的性能。根据直流电流(DC)平衡的原理设计了驱动波形[9]。研究了统一参考灰度相的亮度曲线,并获得了其驱动时间;同时,根据原始灰度对擦除阶段的持续时间进行了重新设计。结果表明响应时间可以有效缩短。此外,可以通过将红色颗粒添加到EPD [10]来制备三色EPD。为了解决红色幽灵图像的问题,Wang等人。分析了灰度转化中红色颗粒的空间位置分布[11]。研究了红色幽灵图像产生的关键因素,并根据擦除和激活阶段的优化提出了驱动波形。在微胶囊顶部的残留红色颗粒在红色擦除阶段消除,并使用高频电压激活颗粒。红色幽灵图像有效地被抑制了。同样,一些学者发现黑色和红色颗粒可以通过阻尼振荡电压序列分离。红色颗粒被纯化,像素的红色饱和度增加[12]。但是,EPD具有低刷新
c物理系,巴凡恩的Vivekananda科学,人文与商业学院,海得拉巴,Telangana,Telangana,500094,印度D,D d diveabhapatnam,Vishakhapatnam,Andhra Pradesh 530045,印度,印度纳米型纳米级液压型载体的使用,自1960年代以来,但是对于表面活性剂浓度,对结构和磁性的关注很少。本文研究了表面活性剂十二烷基硫酸钠(SDS)浓度对钴铁酸盐(COFE 2 O 4)纳米颗粒的影响,该纳米颗粒是在250°C和500°C的退火温度下通过反向胶束制备的。对SDS比率变化的样品(CO:SDS = 1:0.33,1:0.5,1:0.66)进行了XRD,TGA,TEM,FTIR和VSM研究。所有样品表现出单相尖晶石结构,晶体直径范围为10至18 nm。随着SDS浓度的增加,晶体的尺寸减小。TEM图像显示粒径在7.6 -17.7 nm的范围内。VSM调查显示样品的铁磁行为。相同浓度相对于退火温度相对于退火温度,观察到的增加反映了纳米颗粒的单域性质。这强调了退火条件在定制钴铁岩纳米颗粒中的关键作用,作为在纵向磁记录介质中的合适应用。(2024年3月26日收到; 2024年6月7日接受)关键词:钴与SDS比,粒径,反向胶束,十二烷基硫酸钠1.引言铁氧体磁性纳米颗粒一直是其广泛应用的最深入研究和研究的材料之一,包括铁氟烷基技术,磁性冷冻,磁共振成像(MRI),高密度记录,Spintronics,spintronics,抗肿瘤药物,抗肿瘤药物输送,磁性超热和其他[1-4]。钴铁氧体纳米颗粒由于其混合尖晶石结构而引起了很多兴趣,其中包含晶格中A和B位点的二价钴阳离子和三价铁阳离子[5]。钴铁氧体(COFE 2 O 4)具有显着的物理和机械性能,并且具有异常稳定和电绝缘性[6,7]。这些特殊特征使钴铁岩成为广泛医疗应用的可行竞争者[8]。合成铁氧体纳米颗粒的各种方法的目标是匹配其特征,例如粒度和分布,形状,团聚程度和粒子组成程度与特定应用。控制这些质量使您可以在各种应用中提高纳米颗粒的性能,包括磁数据存储,生物成像,催化和环境清理。sol-gel [9],共沉淀[10],微乳液[11]和其他流行的方法,它们具有其优点和局限性。
背景神经科学和建筑通常是合并的,以研究环境,物理空间,颜色,形状和建筑物对大脑活动和健康的影响。这是一个新兴领域,具有不同的领域,研究了与神经科学有关的结构。在建筑的众多要素中,成像性似乎特别感兴趣。成像性是指唤起人们思想中强大图像的物理空间的质量,并影响了认知功能,包括视觉,记忆和空间回忆。假设具有差成像性的环境,空间和建筑物可能会对认知,行为和大脑健康产生负面影响。已经进行了多种研究来检验这种假设,但是缺乏汇编的证据,表明可成像性和神经科学如何相关。因此,我们进行了这项系统的综述,以从建筑学的角度研究神经科学的研究中探索当前对成像性的理解,重点关注其对认知健康和福祉的影响。方法本综述在四个电子数据库中进行了全面的搜索:EBSCO,OVID,PubMed和Web of Science。我们的搜索词包括“成像性”,作为与建筑,环境,构建环境,神经结构,宽敞的,城市设计,记忆性,视觉回忆,心理可视化,建筑特征,尺寸,路面,寻路,路途,熟悉,熟悉,熟悉,熟悉,熟悉,熟悉,熟悉,熟悉,环境和vividness和vividness和vividness和vividness的建筑,城市设计,记忆,心理可视化,建筑特征,建筑特征,建筑特征,建筑特征,建筑特征,建筑特征,建筑特征,建筑特征。在Prisma的四相流图之后进行了结果的综合。讨论资格标准包括英语的同行评审文章,这些文章的重点是可像性,健康和建筑之间的关系。结果初始搜索显示了5269篇文章,这些文章被筛选以排除重复项(n = 1763)。随后,我们对剩余的3506篇文章进行了详尽的审查,我们排除了与研究,非原始研究(n = 24),系统审查(n = 5)无关的(n = 3393)文章(n = 5),没有足够的数据(n = 3),无关联的文章,以及其他各种原因(n = 13)。选定的研究(n = 61)强调了建筑对认知的影响,城市设计在心理健康中的作用以及脑成像方法评估建筑环境影响的影响。可像性涉及并有助于各种认知过程,例如记忆,感知,感觉和语言,具体取决于所使用的刺激类型。图像显示可激活视觉皮层,并在大脑的前部表现出很大的活性,例如岛,内侧额叶皮层和左侧背侧前额叶皮层。
图 29 (a) 每个 I/O 电阻测量的开尔文结构;(b) 键合铜柱的 SEM 横截面 ......................................................................................................... 44 图 30 带 Ru 封盖的 Cu-Cu 键合测试台 ............................................................................. 45 图 31 铜上钌的沉积过程 ............................................................................................. 45 图 32 30 分钟 FGA(合成气体退火)退火后表面 Cu 和 Ru 的百分比 [98] ............................................................................................................. 46 图 33 450°C FGA 退火后,带有针孔的 Ru 表面上的扩散 Cu ............................................................................. 47 图 34 用于研究填充的测试台制造流程 ......................................................................................... 49 (b) 使用 Keyence 7000 显微镜对集成结构进行的顶视图,描绘了顶部芯片上的通孔密度 ............................................................................................................................. 50 图 36 (a) 200 次循环氧化铝 ALD 后扫描 EDX 映射区域的 SEM 图像;(b) 集成结构的顶视图,突出显示了填充覆盖研究区域;(c) EDX 映射结果描绘了铝和氧 pe 的区域 ............................................................................................................................. 51 图 37 200 次循环氧化铝 ALD 后脱粘底部芯片的 FIB 横截面描绘 ............................................................................................................................. 52 图 38 (a) 200 次循环真空清除 ALD 后 EDX 研究的不同区域 - 底部芯片正下方通孔区域(区域 A)、距最近通孔 300 µm 的区域(区域 B)、靠近边缘的区域(区域 C); (b) 三个 r 中的 Al/Si 比率 ...................................................................................................................................... 52 图 39 (a) 集成结构的对角线切割;(b) 描绘平滑填充区域和无填充的受损区域后集成结构横截面的近视图;(c) 描绘填充高达 300 µm 的横截面的未放大图像 ............................................................................................. 54 图 40 (a) ZIF-8 MOF 化学和结构;(b) 示意图表示 ALD ZnO 和转化为气相沉积 MOF,体积膨胀和间隙填充约为 10-15 倍。 ........................................................................................................................................... 56 图 41 在完全填充芯片到基板间隙后,距离最近通孔 300 µm 的集成结构横截面的 EDX 映射.............................................................................57 图 42 横截面的 SEM 图像显示抛光模具未渗透到通孔和芯片与基板的间隙中,从而使上述结果可信 ............................................................................................. 58 图 43 (a) 测试台示意图,顶部芯片具有通孔 Cu-Cu 键合到底部基板;(b) Cu-Cu 键合测试结构的 SEM 横截面(面 A);(c) 键合前顶部芯片表面的铜垫/柱(面 B);(d) 键合前底部芯片表面的带有金属走线的铜柱(面 C) ............................................................................................................................. 59 图 44 20 nm ZnO ALD 后脱键合的底部芯片概览;(b) 通孔下方未沉积填充的区域 ............................................................................................................. 60 图 45 顶部芯片靠近通孔的区域,显示扩散半径为 (a) 572 µm,通孔直径为 240 µm; (b) 75 µm 直径通孔的 364 µm .............................................................. 61 图 46 20 nm ZnO ALD 后的脱粘底部芯片概览,a) 脉冲时间 250 ms 和温度 150°C;(b) 脉冲时间 1 秒和温度 150°C ................................................................................ 62 图 47 反向混合键合的工艺顺序 ............................................................................................. 63 图 48 (a) 1 个 MOF 循环后脱粘底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表明已完全渗透............................................................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样,显示了 500 nm MOF ............................................................................................................................................. 65 图 50 (a) 5 个 MOF 填充循环后脱粘底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)