摘要 — 随着磁共振成像 (MRI) 等用于测量大脑活动的非侵入性技术的最新进展,通过图形信号处理 (GSP) 研究结构和功能性大脑网络已获得显著关注。GSP 是揭示大脑功能和结构之间相互作用的关键工具,能够分析由感兴趣区域之间的连接定义的图形——在此上下文中称为连接组。我们的工作代表了在这个方向上迈出的又一步,通过探索图形表示学习领域的监督对比学习方法。这种方法的主要目标是生成主题级别(即图形级别)的向量表示,将具有相同标签的主题聚集在一起,同时将具有不同标签的主题分开。这些连接组嵌入来自图神经网络编码器-解码器架构,该架构共同考虑了结构和功能连接。通过利用数据增强技术,所提出的框架在使用人类连接组计划数据的性别分类任务中实现了最先进的性能。更广泛地说,我们以连接组为中心的方法论的进步支持了使用 GSP 发现更多大脑功能的良好前景,并可能对理解神经退行性疾病的异质性以实现精准医疗和诊断产生影响。
这项研究是在洛法县利比里亚佐尔佐尔的埃斯特·培根护理学院和助产士进行的。本质上,考试蓝图在教育计划的行为中非常重要。al-Shahrani,(2019年)发现,考试蓝图对学生的影响与许多学术挑战有关,例如研究行为不佳(不阅读每天阅读),记住由于蓝图可用性而引起的考试,得分更高,但不记得材料。有些学生是一些学生得分较低的学生,而另一些学生由于考试蓝图的准备不佳而得分不佳,由于学习习惯不佳而在等待考试蓝图的同时,与其他学生的互动不足。考试蓝图对考生和审查员很有价值,因为它列出并区分了如果构造良好的考试类别。考试蓝图用于帮助学生在准备考试时集中学习。学生的表现仍然是教育工作者的重中之重。它是为了在当地,地区,全球和全球上产生改变。教育工作者,培训师和研究人员长期以来一直有兴趣通过多种方式探索有效促进学习者表现质量的变量,在考试前,哪种方式可以提供考试蓝图。
目的:脑电图(EEG)有助于阐明儿童皮质交流和认知过程之间的关联。我们研究了在没有临床癫痫发作的情况下,脑电图异常是否与发育延迟/智力障碍(DD/ID)有关。方法:我们回顾性地确定了166名DD/ID儿童,他们在2011年1月至2021年12月之间在Pusan国立大学医院接受了脑电图。我们比较了正常和异常脑电图的临床特征和测试结果。另外,我们分析了与神经发育障碍有关的脑电图异常,特别是自闭症谱系障碍(ASD)和注意力缺陷多动障碍(ADHD)。结果:在166例患者中,有39例(23.5%)的脑电图异常,而127(76.5%)的脑电图正常。25例(64.1%)患者表现出癫痫样排放,其中包括22(56.3%),局灶性分泌物和三名(7.7%)和全身放电。焦点排放最常影响中心区域(35.9%)。二十名患者(51.3%)表现出节奏的减慢模式。epi麻风病的诊断比正常的脑电图(n = 9,7.1%)(p <0.001)更为普遍。有5例(12.8%)患有异常的脑电图。,有5例(36.4%)患有异常的脑电图,均患有癫痫样排放。两名ASD患者和两名ADHD患者表现出节奏的速度。结论:EEG代表了DD儿童的潜在筛查工具。异常的脑电图发现在遗传异常中更为普遍(26 vs. 13,p = 0.017)。异常的脑电图发现与癫痫风险增加有关,从而为诊断和治疗计划提供了信息。
图对比学习(GCL)在图表示学习中表现出了显著的功效。然而,先前的研究忽略了在使用图神经网络(GNN)作为节点级对比学习的编码器时出现的内在冲突。这种冲突属于图神经网络的特征聚合机制与对比学习的嵌入区分特性之间的部分不协调。理论上,为了研究冲突的位置和程度,我们从 InfoNCE 损失的梯度角度分析了消息传递的参与。与其他领域的对比学习不同,GCL 中的冲突是由于在消息传递的方式下,某些样本同时对正向和负向的梯度有贡献,这是相反的优化方向。为了进一步解决冲突问题,我们提出了一个称为 ReGCL 的实用框架,它利用 GCL 梯度的理论发现来有效地改进图对比学习。具体而言,在消息传递和损失函数方面设计了两种基于梯度的策略来缓解冲突。首先,提出了一种梯度引导结构学习方法,以获得适应对比学习原理的结构。其次,设计了一种梯度加权的 InfoNCE 损失函数来降低高概率假阴性样本的影响,特别是从图编码器的角度来看。大量实验证明了所提出的方法与各种节点分类基准中最先进的基线相比具有优越性。
在本文中,我们提出了一个可解释的脑图对比学习框架,旨在通过无监督的方式学习脑图表征,以用于疾病预测和病因分析。我们的框架包含两个关键设计:首先,我们利用可控的数据增强策略来扰动不重要的结构和属性特征以生成脑图。然后,考虑到健康和患者脑图的差异较小,我们引入硬负样本评估来加权对比损失的负样本,这可以学习更具判别性的脑图表征。更重要的是,我们的方法可以观察到显著的大脑区域和连接以用于病因分析。我们在三个真实的神经影像数据集上进行了疾病预测和可解释分析实验,以证明我们框架的有效性。
确定药物,微生物和疾病之间的潜在关联对于探索发病机理和改善精确医学具有重要意义。有很多用于成对关联预测的计算方法,例如药物微生物和微生物 - 疾病酶关联,但很少有方法集中在高阶三质量药物 - 微生物 - 疾病(DMD)关联上。由HyperGraph神经网络(HGNN)的进步驱动,我们希望它们能够完全限制高级相互作用模式,这是由DMD关联和重新确定声音预测性能提出的Hy-Pergraph背后的。但是,由于体外筛查的高成本,已确认的DMD关联不足,该筛选形成了稀疏的DMD超图,因此具有次级通用能力。为了减轻限制,我们提出了一个dmd关联预测,提出了一个名为MCHNN的经验化学习。我们在DMD HyperGraph上设计了一种新颖的多视图对比学习(CL)作为辅助任务,该任务指导HGNN学习更多的判别性代表并增强通用能力。extentiment实验表明,MCHNN在DMD关联预先字典中实现了令人满意的性能,更重要的是,在稀疏的DMD Hypergraph上设计了我们设计的多视图CL的效率。
药物-靶标结合亲和力预测在药物发现的早期阶段起着重要作用,可以推断新药与新靶标之间相互作用的强度。然而,以前的计算模型的性能受到以下缺点的限制。药物表示的学习仅依赖于监督数据,而没有考虑分子图本身所包含的信息。此外,大多数以前的研究倾向于设计复杂的表示学习模块,而忽略了用于衡量表示质量的均匀性。在本研究中,我们提出了GraphCL-DTA,一种用于药物-靶标结合亲和力预测的具有分子语义的图对比学习。在GraphCL-DTA中,我们设计了一个针对分子图的图对比学习框架来学习药物表示,从而保留了分子图的语义。通过该图对比框架,可以在不需要额外监督数据的情况下学习更本质、更有效的药物表示。接下来,我们设计了一个新的损失函数,可直接用于平滑地调整药物和靶标表示的均匀性。通过直接优化表示的均匀性,可以提高药物和靶标的表示质量。在KIBA和Davis两个真实数据集上验证了上述创新元素的有效性。GraphCL-DTA在上述数据集上的优异表现表明了其优于当前最佳模型。
临床决策需要抽象的客观精确和可靠的超声心动图评估(LVEF)。最近,已经开发了人工智能(AI)模型来准确估计LVEF。这项研究的目的是评估AI模型是否可以估算LVEF的专家读取并降低1级读取器的机构间变异性,其中AI-LVEF在超声心动图屏幕上显示。方法是由1级超声心动图技能(解释图像的最低能力水平)的五位心脏病学家进行的,这项前瞻性超声心动图研究。协议1:测量48个病例的视觉LVEF,而无需从AI-LVEF输入。协议2:再次向所有读者展示了48个情况,其中包含AI-LVEF数据。为了评估有或没有AI-LVEF的一致性和准确性,将每个视觉LVEF测量与五位专家读者的平均估计值进行了比较。结果在AI-LVEF和参考LVEF(r = 0.90,p <0.001)之间发现了良好的相关性。对于分类LVEF,心力衰竭的曲线下面积为0.95,而保留的EF为0.96,心力衰竭减少了EF。对于精确度,使用Ai-LVEF将SD从6.1±2.3降低至2.5±0.9(p <0.001)。对于精度,用AI-LVEF将根平方误差从7.5±3.1提高到5.6±3.2(p = 0.004)。结论AI可以为来自不同机构的1级读者的超声心动图上的收缩功能解释。