Loading...
机构名称:
¥ 1.0

临床决策需要抽象的客观精确和可靠的超声心动图评估(LVEF)。最近,已经开发了人工智能(AI)模型来准确估计LVEF。这项研究的目的是评估AI模型是否可以估算LVEF的专家读取并降低1级读取器的机构间变异性,其中AI-LVEF在超声心动图屏幕上显示。方法是由1级超声心动图技能(解释图像的最低能力水平)的五位心脏病学家进行的,这项前瞻性超声心动图研究。协议1:测量48个病例的视觉LVEF,而无需从AI-LVEF输入。协议2:再次向所有读者展示了48个情况,其中包含AI-LVEF数据。为了评估有或没有AI-LVEF的一致性和准确性,将每个视觉LVEF测量与五位专家读者的平均估计值进行了比较。结果在AI-LVEF和参考LVEF(r = 0.90,p <0.001)之间发现了良好的相关性。对于分类LVEF,心力衰竭的曲线下面积为0.95,而保留的EF为0.96,心力衰竭减少了EF。对于精确度,使用Ai-LVEF将SD从6.1±2.3降低至2.5±0.9(p <0.001)。对于精度,用AI-LVEF将根平方误差从7.5±3.1提高到5.6±3.2(p = 0.004)。结论AI可以为来自不同机构的1级读者的超声心动图上的收缩功能解释。

超声心动图对收缩功能的辅助解释

超声心动图对收缩功能的辅助解释PDF文件第1页

超声心动图对收缩功能的辅助解释PDF文件第2页

超声心动图对收缩功能的辅助解释PDF文件第3页

超声心动图对收缩功能的辅助解释PDF文件第4页

超声心动图对收缩功能的辅助解释PDF文件第5页

相关文件推荐