摘要 在量子计算和量子信息处理中,图状态是一种特殊类型的量子状态,常用于量子网络和量子纠错。一个反复出现的问题是仅使用局部操作找到从给定源图状态到所需目标图状态的转换。最近有研究表明,确定可转换性已经是 NP 难问题。在本文中,我们提出了一种用于局部和非局部图状态操作的 CNF 编码,对应于一和两量子比特 Clifford 门和单量子比特 Pauli 测量。我们在有界模型检查设置中使用此编码来合成所需的转换。此外,对于局部转换的完整性阈值,我们提供了转换长度的上限(如果存在)。我们在两种设置中评估该方法:第一种是从可以改变量子比特数量的随机图状态合成无处不在的 GHZ 状态,而第二种则基于拟议的 14 节点量子网络。我们发现该方法能够在 30 分钟内合成多达 17 个量子比特的图形转换。
我们提出了一个精确可解的玩具模型,用于 N 个量子比特的置换不变图状态的连续耗散动力学。此类状态局部等效于 N 个量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态,后者是许多量子信息处理装置中的基本资源。我们重点研究由 Lindblad 主方程控制的状态的时间演化,该方程具有三个标准单量子比特跳跃算子,哈密顿量部分设置为零。通过推导出在 Pauli 基中随时展开的可观测量的期望值的解析表达式,我们分析了非平凡的中间时间动力学。使用基于矩阵乘积算子的数值求解器,我们模拟了最多 64 个量子比特的系统的时间演化,并验证了数值上与解析结果的精确一致性。我们发现,系统二分算子空间纠缠熵的演化呈现出一个平台期,其持续时间随着量子比特的数量呈对数增加,而所有泡利算子积的期望值最多在常数时间内衰减。