我们提出了一个精确可解的玩具模型,用于 N 个量子比特的置换不变图状态的连续耗散动力学。此类状态局部等效于 N 个量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态,后者是许多量子信息处理装置中的基本资源。我们重点研究由 Lindblad 主方程控制的状态的时间演化,该方程具有三个标准单量子比特跳跃算子,哈密顿量部分设置为零。通过推导出在 Pauli 基中随时展开的可观测量的期望值的解析表达式,我们分析了非平凡的中间时间动力学。使用基于矩阵乘积算子的数值求解器,我们模拟了最多 64 个量子比特的系统的时间演化,并验证了数值上与解析结果的精确一致性。我们发现,系统二分算子空间纠缠熵的演化呈现出一个平台期,其持续时间随着量子比特的数量呈对数增加,而所有泡利算子积的期望值最多在常数时间内衰减。
主要关键词