通过腔量子电动力学增强单光子源发射是实现许多量子光学技术中适用发射器的关键。在这项工作中,我们提出了一种灵活方便的腔体制造工艺,该工艺将 SU-8 微带确定性地写入光子晶体波导,其中 InGaAs/GaAs 量子点作为发射器。条带腔在具有选定发射波长的量子点位置处进行激光图案化。进行了微光致发光研究,结果表明,在与单个量子点弱耦合的情况下,发射强度增强了 2.1 倍,时间分辨光致发光进一步显示 Purcell 增强因子为 2.16。因此,该制造工艺被证实是一种将确定性腔耦合引入选定量子点的可靠方法。
摘要:多功能玻璃因其出色的机械、光学、热学和化学性能组合而在许多成熟和新兴行业中很常见,例如微电子、光伏、光学元件和生物医学设备。通过纳米/微图案化进行表面功能化可以进一步增强玻璃的表面特性,将其适用性扩展到新的领域。尽管激光结构化方法已成功应用于许多吸收材料,但透明材料在可见激光辐射下的可加工性尚未得到深入研究,尤其是对于生产小于 10 µ m 的结构。在这里,基于干涉的光学装置用于通过可见光谱中 ps 脉冲激光辐射的非线性吸收直接对钠石灰基板进行图案化。制作的线状和点状图案具有 2.3 至 9.0 µ m 之间的空间周期和高达 0.29 的纵横比。此外,在这些微结构中可以看到特征尺寸约为 300 nm 的激光诱导周期性表面结构 (LIPSS)。纹理化表面显示出显著改变的特性。也就是说,经过处理的表面具有增强的亲水行为,在某些情况下甚至达到超亲水状态。此外,微图案充当浮雕衍射光栅,将入射光分成衍射模式。优化了工艺参数,以产生具有超亲水特性和衍射效率超过 30% 的高质量纹理。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
10 2020 IEEE 第 70 届电子元件和技术会议 │ 2020 年 6 月 3 日 – 6 月 30 日
1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。
1 巴黎北索邦大学 (USPN) 材料科学实验室 (LSPM-CNRS UPR-3407), 93430 Villetaneuse, France; anhnn@hus.edu.vn (ANN); thanhhuyen.vltn@gmail.com (HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术研究院材料科学研究所,Cau Giay Distr.,河内,越南 3 激光物理实验室 (LPL-CNRS UMR-7538),巴黎北索邦大学 (USPN),93430 Villetaneuse,法国; jeanne.solard@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所 (ICMAB-CSIC),UAB 校区,08193 Bellaterra,西班牙; agomez@icmab.es (AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM,艺术与工艺学院,CNRS,Cnam,HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAULT@ensam.eu * 通讯地址:silvana.mercone@univ-paris13.fr