摘要:脑组织分割是使用多模态磁共振成像 (MR) 进行脑部疾病临床诊断的重要组成部分。文献中已通过许多无监督方法开发了脑组织分割。最常用的无监督方法是 K 均值、期望最大化和模糊聚类。与上述方法相比,模糊聚类方法具有相当大的优势,因为它们能够处理复杂、不确定性很大且不精确的脑图像。然而,这种方法存在数据采集过程中固有的噪声和强度不均匀性 (IIH)。为了解决这些问题,我们提出了一种模糊共识聚类算法,该算法定义了一个由投票方案产生的成员函数来对像素进行聚类。具体来说,我们首先预处理 MRI 数据,并采用基于传统模糊集和直觉集的几种分割技术。然后,我们采用投票方案来融合应用的聚类方法的结果。最后,为了评估所提出的方法,我们在两个公开可用的数据集(OASIS 和 IBSR18)上使用了众所周知的性能指标(边界测量、重叠测量和体积测量)。实验结果表明,与最近的最新技术相比,所提出的方法具有更优越的性能。所提出方法的性能还使用现实世界的自闭症谱系障碍检测问题进行了展示,与其他现有方法相比,其准确率更高。
摘要 - 采用信息技术进行教学和学习活动引起了教师之间的技能。在过去的几年中,中国教师的技术训练研究仅限于诸如诸如技术超负荷,技术复杂性,技术 - 系统性,技术 - 不确定性和技术入侵之类的因素,并忽略了新技术采用的新兴因素。此外,所有技术训练研究都没有根据技术训练因素来识别教师群体的进一步审议。这项研究涵盖了中国湖南教师的技术应力因素识别范围和教师集群的产生范围。通过问卷调查来收集有关五个技术因素的教师协议,并使用统计方法来衡量回答。调查结果表明,所有调查的因素与中国教师Hunan的Technostress都有积极和显着的关系。使用K-均值聚类方法将教师聚类为五个不同的群集。这项研究发现了新技术是一种新技术,并成功地将教师聚集在重要的集群中,以使中国的教育部门能够为教师提供有针对性的技术培训。
大脑可以表示为一个时间图,其中节点是大脑图谱定义的空间分布的感兴趣区域 (ROI)。边缘由应用于 fMRI 数据的动态功能连接 (dFC) 测量确定。新兴研究表明,ROI 群落的时间动态是了解大脑功能和功能障碍的有用生物标志物。现有方法大多数都受到假设静态连接的限制,或者难以扩展到许多受试者,或者是监督的(Ting 等人,2020 年;Gadgil 等人,2020 年)。基于这些限制,我们提出了一种无监督时间图深度生成模型 (TG-DGM),用于从 fMRI 数据中学习大脑活动的动态群落。我们的模型受到图动态嵌入 (GRADE) 的启发(Spasov 等人,2020 年)。具体来说,我们通过引入多图学习和主题嵌入来扩展 GRADE,使其能够量化特定主题对社区成员和动态的影响。我们证明我们的方法可以学习高质量的表示,并且考虑到时间动态可以提高生物性别分类任务的性能。可能的应用包括使用嵌入来发现新的患者类别,以及识别 ROI 的新功能网络(即集群)。
查找数据集的一组嵌套分区对于在不同尺度上发现相关结构很有用,并且经常处理与数据有关的方法。在本文中,我们引入了一种基于模型的分层聚类的一般两步方法。将集成的分类可能性标准视为目标函数,此工作适用于该数量可以处理的每个离散潜在变量模型(DLVM)。该方法的第一步涉及最大程度地提高相对于分区的标准。解决了通过贪婪的山坡攀岩启发式方法发现的已知局部最大最大最大最大值问题时,我们基于遗传算法引入了一种新的混合算法,该算法允许有效地探索解决方案的空间。所得算法小心地结合并合并了不同的解决方案,并允许簇数K的共同推断以及簇本身。从这个自然分区开始,该方法的第二步是基于自下而上的贪婪程序来提取簇的层次结构。在贝叶斯语境中,这是通过考虑dirichlet群集比例的先验参数α作为控制聚类粒度的正规化项来实现的。标准的新近似值被推导为α的对数线性函数,从而实现了合并决策标准的简单函数形式。第二步允许在更粗的尺度上探索聚类。将所提出的方法与现有的模拟和实际设置的策略进行了比较,结果表明其结果特别相关。本工作的参考实现可在论文1随附的r软件包贪婪中获得。
基因序列聚类在计算生物学和生物信息学中非常重要且重要,用于研究系统发育关系和基因功能预测等。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。 基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。 例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。 已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。 需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。算法。本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。此外,我们开发了一个多节点版本来处理大型数据集。该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。强可伸缩性测试表明,NGIA的多节点版本可以以31%的并行效率扩展32个线程。©2022 Elsevier B.V.保留所有权利。
1心理健康与成瘾司,挪威精神障碍研究中心(诺门特),奥斯陆大学医院和挪威奥斯陆奥斯陆大学临床医学研究所; 2荷兰马斯特里赫特市马斯特里赫特大学心理健康与神经科学学院卫生,医学和生命科学学院; 3挪威奥斯陆奥斯陆大学心理学系; 4耶鲁大学医学院精神病学系,康涅狄格州纽黑文; 5荷兰乌得勒支乌得勒支大学医学中心精神病学系; 6 Cardiff大学神经精神遗传学与基因组学中心心理医学和临床神经科学系,英国加的夫大学的卡迪夫大学医学院; 7挪威奥斯陆奥斯陆大学医院医学遗传学系; 8挪威卑尔根大学精神障碍研究中心临床科学系; 9 K.G.Jebsen神经发育障碍中心,奥斯陆奥斯陆大学,挪威; 10精神病学和心理治疗系,TüBingen心理健康中心,德国TüBingenTüBingen大学; 11德国心理健康中心(DZPG),德国TüBingenJebsen神经发育障碍中心,奥斯陆奥斯陆大学,挪威; 10精神病学和心理治疗系,TüBingen心理健康中心,德国TüBingenTüBingen大学; 11德国心理健康中心(DZPG),德国TüBingen
注:聚类是指系统发育分析中显示的 S . vulgaris 种群的遗传聚类关系(图 2)。显著影响以粗体表示。对于二元数据(发芽、开花、存活),采用二项分布;对于计数数据(花、叶、枝的数量),采用泊松误差分布。
摘要 - 聚噻吩和多吡咯是两个知名的导电聚合物,具有多种特性,并且在电子,传感器和能量存储等扇区中进行了多种潜在应用。本文进一步研究了聚噻吩和多吡咯的合成和分析。息肉吡咯和聚噻吩。分析这些聚合物所采用的方法包括光谱(UV-VIS,FTIR),热分析(TGA,DSC),显微镜(SEM,TEM)和电化学分析(环状伏安法)。研究了多吡咯和聚噻吩的几种特征,并与它们的电化学,热,形态和结构特性有关。我们还讨论了这些导电聚合物如何由于其表征所揭示的独特性能而在电气设备,传感器和能源存储系统中使用。聚噻吩和多吡咯烷现在可以在广泛的高科技应用中使用,因为它们的合成和特性是更众所周知的。
使用顺序渗透合成 (SIS) 将无机氧化物渗透到聚合物内部是一种有效的方法,可用于创建广泛应用的材料。各种聚合物官能团与有机金属/无机前体之间的反应是独一无二的,因此了解一系列前体和聚合物之间的特定相互作用对于实现预测性工艺设计和将 SIS 的效用扩展到应用至关重要。在本文中,在三种不同的均聚物中的 Al 2 O 3 和 TiO 2 SIS 期间进行了原位傅里叶变换红外光谱 (FTIR) 测量:聚甲基丙烯酸甲酯 (PMMA)、聚己内酯 (PCL) 和聚 2-乙烯基吡啶 (P2VP)。从前体暴露后和随后的吹扫时间内的 FTIR 强度变化可以定量表明,这些聚合物与金属前体的相互作用动力学以及中间复合物的稳定性存在很大差异。这项比较研究的一个重要发现是,尽管 PCL 的羰基 (C=O) 和酯基 (COR) 官能团与相互作用较弱的 PMMA 相似,但 PCL 与金属前体的相互作用要强得多。这种行为表明,除了官能团的特性之外,还有其他因素决定了聚合物与 SIS 中的金属化合物的相互作用方式。PCL 以前从未在 SIS 工艺中出现过,它可能是一种有吸引力的聚合物模板,可用于实现均匀性和成本效益更高的 SIS。