通过利用铁电/铁弹性切换,在压电传感器中提高了提高功率输出和能量密度。但是,一个问题是,稳定的工作周期通常不能仅由压力驱动。通过在部分螺旋的铁电中使用内部偏置场来解决此问题:材料状态的设计使得压力驱动机械加载过程中的铁弹性切换,而残留场在卸载过程中恢复了极化状态。但是,尽管已验证了此方法,但尚未系统地探索具有最佳性能的工程材料状态的设备。在这项工作中,使用部分固定(预先pol的)铁电中的内部偏置场来指导极化开关,从而产生有效的能量收集循环。设备在1-20 Hz的频率范围内进行了测试和优化,并系统地探索了制造过程中预拆平程度对能量收集性能的影响。发现,将铁电陶瓷预先固定到约25%的完全悬垂状态中会导致一种设备,该设备可以在20 Hz处产生大约26 mW cm-3的活性材料的功率密度,先前工作的改善和比常规PiezoeColectrics的高度提前的命令。但是,最大化功率密度可能会导致残余压力,在准备过程中或服务过程中会损害设备的危害。研究了制造成功率与预拆平水平之间的关系,这表明较高的预拆平程度与较高的存活率相关。这为能量转换与设备鲁棒性平衡提供了基础。
摘要。- 传统的反癌治疗远非令人满意。迫切需要将新的治疗剂与传统治疗方法结合起来,以提高抗癌的效力。铁凋亡是一种依赖铁的非凋亡细胞死亡类型的新型类型,仍然可以为凋亡失败和坏死诱导治疗的患者提供良好的效果。铁在诱导铁铁作用过程中起着维特作用。虽然铁是癌症治疗中的双重剑,但铁的特异性分布尤其重要。纳米技术是帮助靶向分布的药物的有效方法。我们打算回顾铁腐病和基于铁的纳米疗法的最新进展。首先,简要审查了铁凋亡与铁代谢之间的关系,以证明铁在铁吞作用诱导中的核心作用。第二,根据不同的设计提出和讨论了基于铁的纳米技术的纳米技术进展。最后,人们对基于铁的纳米疗法对铁铁作用的未来期望得到了焦点。
大肠疾病属由几种物种和神秘的进化枝组成,包括e。大肠杆菌,表现为脊椎动物的肠道共生,也是腹泻和肠外疾病的机会性病原体。为了表征该属内肠外毒力的遗传确定者,我们对代表Escherichia Genus Genus Genologenogencementic多样性的370个共生,致病性和环境菌株进行了一项无偏的基因组研究(GWAS)研究(GWAS)。albertii(n = 7),e。fergusonii(n = 5),大肠杆菌(n = 32)和e。大肠杆菌(n = 326),在败血症的小鼠模型中进行了测试。我们发现,编码Yersiniabactin siderophore的A高致病岛(HPI)的存在与小鼠的死亡高度相关,与其他相关遗传因素相关,也超过了与铁的摄取相关的其他相关遗传因素,例如Aerobactin和Sitabcd operons。我们通过删除e中HPI的关键基因来确认体内关联。大肠杆菌菌株在两个系统发育背景下。然后,我们在E的一部分中搜索了毒力,铁捕获系统和体外生长之间的相关性。大肠杆菌菌株(n = 186)先前在生长条件下表型,包括抗生素以及其他化学和物理胁迫。我们发现,在存在大量抗生素的情况下,毒力和铁捕获系统与生长呈正相关,这可能是由于毒力和耐药性的共选择。我们还发现在存在特定抗生素的情况下毒力,铁摄取系统与生长之间的负相关性(i。e。头孢霉素和毒素),这暗示了与内在毒力相关的潜在“侧支敏感性”。这项研究表明铁捕获系统在大肠疾病的肠外毒力中的主要作用。
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
市场研究公司 Omdia 在其《SiC 和 GaN 功率半导体报告——2020 年》(见第 74-75 页)中指出,受混合动力和电动汽车 (HEVs/EVs)、电源和光伏 (PV) 逆变器需求的推动,碳化硅 (SiC) 和氮化镓 (GaN) 功率半导体市场预计将在 2021 年超过 10 亿美元,因为它正迅速从初创公司主导的行业发展为由大型知名功率半导体制造商主导的行业。例如,三菱电机现已推出其第二代全 SiC 功率模块,采用新开发的低功耗工业用 SiC 芯片(第 15 页)。此外,在美国空军研究实验室 (AFRL) 的一项第一阶段小型企业技术转移研究 (STTR) 项目的资助下,结构材料工业公司 (SMI) 开发了一种用于 4H-SiC 的低温化学气相沉积 (CVD) 工艺,可实现用于高压功率器件的厚外延层的更高速率生长(同时缩短工艺周期和设备磨损)(第 14 页)。与此同时,SMI 还与纽约州立大学 (SUNY) 奥尔巴尼理工学院合作,获得了美国能源部授予的第一阶段 STTR 合同,以开发普遍的制造基础设施 - 包括改善大晶圆金属有机化学气相沉积 (MOCVD) 均匀性 - 用于在高电流和高电压 (>20A/>600V) 下运行的 GaN,用于电动汽车电力电子设备(第 16 页)。正在推进 GaN 器件功能的制造商包括 EPC,该公司已推出其最新的 100V eGaN FET 系列,面向自动驾驶汽车的 LiDAR 等应用(第 18 页)。GaN 器件在电源应用(例如消费电子产品的快速充电器)中的应用持续激增(尤其是随着性能的提高)。例如,在 Apple iPhone 12 预计于今年晚些时候发布之前,移动配件品牌 Spigen PowerArc 已在新款 20W ArcStation Pro 中使用了 Navitas 的 GaNFast 电源 IC。与此同时,中国的 OPPO 已采用 GaNFast 电源 IC,用于据称是最小、最薄、最轻的 110W 智能手机、平板电脑和笔记本电脑快速充电器(第 19 页)。除了通过向制造合作伙伴 Nexperia 授予许可来增加收入外,Transphorm 还扩展了其高压 GaN 电源转换设备产品组合,旨在推动快速充电电源适配器的普及(第 20 页)。GaN Systems 宣布推出一款新的参考设计,用于包括手机和笔记本电脑在内的消费电子产品中的高功率密度 65W 充电器(第 21 页)。Mark Telford,编辑 mark@semiconductor-today.com该公司还发布了一份白皮书,展示了其 GaN 器件的可靠性,超过了 JEDEC 和 AEC-Q101 测试规范的标准。在新加坡,IGSS GaN (IGaN) 正在建立一个 Epi 中心,作为 4-8 英寸晶圆 GaN MOCVD 的商业和全球联合实验室,将于 2021 年中期投入运营(第 22 页)。最近,就在 9 月 29 日,总部位于荷兰的 NXP Semiconductors 在其位于亚利桑那州钱德勒的工厂开设了新的 8 英寸晶圆 GaN 晶圆厂,专门用于蜂窝基础设施的 5G RF 功率放大器。新晶圆厂已经通过认证,初始产品正在市场上迅速推广,预计将在 2020 年底达到满负荷生产(下一期新闻页面将全面报道)。
摘要 本研究旨在确定圆屋图策略对伊尔比德教育局四年级社会与国家教育课程成绩的有效性。 采用准实验方法。 研究样本包括伊尔比德教育局学校四年级的 (56) 名男女学生; 他们被分成两组:对照组包括 14 名男生和 14 名女生,实验组包括 14 名男生和 14 名女生。 研究人员进行了一项成绩测试,该测试包含 (20) 个项目,其有效性和可靠性已得到确认; 并进行了统计处理和分析。 结果表明,学生在组变量上的分数在 (0.05) 水平上存在统计学上的显著差异,实验组占优势; 在事后测量中,性别变量在 (0.05) 水平上存在统计学上的显著差异,男性占优势。本研究建议将圆屋图策略纳入教学策略,在教学过程中使用,并让教师参与圆屋图策略的培训课程。关键词:(圆屋图,成就,社会和国家教育,四年级)。引言圆屋策略是 Wandersee 提出的元认知方法之一(Wandersee,1994
目前有两种方法可以消除主轴误差,但需要进行多次跟踪。 Donaldson (4 J) 给出了一种需要两条轨迹的方法,用于转盘式仪器。在轨迹之间,工件和触针位置旋转 1800,而轴和外壳位置保持不变。如果两个图形都记录在同一张图表上,则通过在两者中间绘制第三张图形来获得真实的工件轮廓。虽然非常适合转盘式仪器,但这种方法不易适应主轴式仪器。
保留所有权利。未经 PUB 事先许可,不得以任何形式或任何手段(电子、机械、影印、录音或其他方式)复制、存储于检索系统或传播本出版物的任何部分。