摘要:考古学家经常依靠被动机载光学遥感技术来为(欧洲)景观考古项目提供一些核心数据。尽管这一考古领域经历了许多技术和理论的演变,但主要的航空摄影调查以及不太常见的考古机载侦察方法仍然受到许多固有偏差的影响,这些偏差是由低于标准的采样策略、成本、仪器可用性和后处理问题造成的。本文从景观(考古学)的概念开始,并用它来构建考古机载遥感。在介绍了对已经扭曲的考古人群进行采样时减少偏差的必要性并扩展了航空调查的“理论中立”主张之后,本文提出了八个关键特征,这些特征都有可能增加或减少使用被动传感器收集机载光学图像时的主观性和偏差。在此背景下,本文随后对景观考古学在过去几十年中依赖的各种被动机载光学成像解决方案进行了一些技术方法论反思。在这样做时,它对这些高度主观的方法对景观考古学的有效性和适用性提出了质疑。最后,本文提出了一种新的、更客观的利用被动传感器进行航空光学图像采集的方法。在讨论中,本文认为
能量,矿物,水,土壤和食物资源是通过在地球地下,地面,海洋和大气中运行的复杂的,相互作用的材料和过程相互作用的集合而产生的。本课程对地球动态系统和物质有深入的了解,如何用于能源,矿物勘探和提取的地球科学技术,以及地球科学技能对于能量过渡到具有环境友好友好和保护能源供应的低碳经济至关重要的。
S OCHOR V.、S OLC J.、SELBACH H.-J.、A UBINEAU -L ANIÈCE I.、L OURENÇO V.、GA BRIS F.、GRINDBORG J.-E.、K OSUNEN A .、S ISKONEN T.、J ARVINEN H.、SIPILA P.、GLOUDSTONE C.、SANDER T.、SHARPE P.、 Z EMAN J.、O LIVEIRA C.、PORTUGAL L.、RO ODRIGUES M.、LUCAS P.A. 和 T EDGREN A.C.,“近距离放射治疗源剂量与水的 3D 分布的测量值和蒙特卡罗模拟的比较”,癌症治疗先进计量学会议 (CAMCT 2011),德国布伦瑞克,11 月 29 日至 12 月 1 日2011.
第一次瑞士地球科学会议于 2003 年 11 月在巴塞尔举行。第一次 SGM 的主要发起人 Stefan Schmid 及其在巴塞尔大学的同事在 2003 年还无法预见到,他们为瑞士地球科学家提供年度讨论平台的想法会取得如此成功。从那时起,来自瑞士各地和邻国的地球科学家每年 11 月都会抓住机会在 SGM 上聚会一次,交流想法。过去 8 年,包括瑞士南部应用科学大学在内的瑞士主要大学的地质学和地理学系接待了地球科学界。过去几年 SGM 的成功得益于瑞士科学院 SCNAT 及其地球科学平台的持续支持。我谨代表当地组委会向 Pierre Dèzes (SCNAT) 表示诚挚的感谢。他对 SGM 的坚定承诺使得我们今天能够在苏黎世相聚。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术能够在高度方向上实现真正的几何分辨能力,并为许多应用和反演问题引入了新的可能性。即使是因重叠和缩短效应导致的 SAR 图像中的误解也可以通过断层扫描处理解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了有限飞行轨迹数量带来的限制。我们提出了一种方法,用于减少与成像位置不规则和欠采样空间分布相关的高度模糊性。最后,我们解决了极化机载 SAR 断层扫描的实验要求,并使用德国奥伯法芬霍芬附近试验场的 DLR 实验 SAR(E-SAR)在 L 波段获取的多基线数据集展示了实验结果。
作者向新泽西州西长滩蒙茅斯大学的研究生表示感谢。我感谢他们在研究和审查地球科学网站方面提供的帮助,感谢他们对本手册的支持和热情,感谢他们将技术融入教学和日常生活的更广泛过程。许多学生审查了第一章的相关性和可用性。此外,三名研究生助理使审查过程正规化,并提供了一些作者审查过的网站,以供添加到手册中。我特别要感谢蒙茅斯大学的以下研究生:Cynthia Coughlin、Julia D’Alessandro、Dena DeFlora、Erica Golterman、Danielle Graham、Ryan Hamilton、Anne Hazeldine、Michael Iasparro、Colleen Kenny、Michael Lozinski、Karen Magaraci、Allison Meyer、Bradley Millaway、Jennifer Orgo、Eliza-beth Rogers、Laurie Rosenthal、Lisa Ruggiero、Laura Ryan、Christine Tor-toriello、Audra Trost、Lynn West、Cheryl Whinna、Mark Alfone 审阅了第 1 章,以及研究生助理 Hasmukh A. Patel、Abdel-ghani Lakmini 和 Jeff Portland。我向 Eleanora Von Dehsen 博士表示敬意和钦佩,她的远见和领导力促成了本手册及其后续系列的开发。最后,我要把这本书献给我的父母,他们鼓励我“接受教育”,还有我的儿子柯克·梅尔尼科夫,他一直是我最好的朋友。
NASA Ikhana 无人机 (UAV) 是通用原子航空系统公司 (加利福尼亚州圣地亚哥) MQ-9 Predator-B 的改进版,用于支持 NASA 科学任务理事会以及通过合作伙伴关系与其他政府机构和大学开展地球科学任务。它可以在航空电子设备舱和外部吊舱中携带超过 2000 磅的实验有效载荷,并且能够在 40,000 英尺以上的高度执行超过 24 小时的任务。该飞机由移动地面控制站 (GCS) 远程驾驶,该控制站设计为可通过空中、陆地或海上部署。机载支持功能包括仪表系统和机载研究测试系统 (ARTS)。Ikhana 项目将于 2007 年初完成 GCS 开发、科学支持系统集成、外部吊舱集成和飞行许可以及操作人员培训。目前计划于 2007 年夏季进行大面积遥感任务。关键词:Predator-B、地球科学平台、高空长航时 (HALE)、Ikhana、UAS、UAV。
摘要— 先进星载热辐射和反射辐射计 (ASTER) 是由日本东京国际贸易和工业部 (MITI) 提供的研究设施仪器,将于 1998 年发射到 NASA 的地球观测系统早晨 (EOS-AM1) 平台上。ASTER 在可见近红外 (VNIR) 中有三个光谱波段,在短波红外 (SWIR) 中有三个波段,在热红外 (TIR) 区域有五个波段,地面分辨率分别为 15 米、30 米和 90 米。VNIR 子系统有一个后视波段,用于沿轨道方向的立体观测。由于数据将具有广泛的光谱覆盖范围和相对较高的空间分辨率,我们将能够区分各种表面材料并减少由混合像素导致的一些低分辨率数据中的问题。 ASTER 将首次提供高空间分辨率的轨道多光谱热红外数据以及所有 EOS-AM1 仪器中空间分辨率最高的表面光谱反射温度和发射率数据。ASTER 任务的主要科学目标是提高对发生在地球表面和低层大气上或附近的局部和区域尺度过程的理解,包括地表-大气相互作用。科学调查的具体领域包括:1) 陆地表面气候学;2) 植被和生态系统动态;3) 火山监测;4) 灾害监测;5) 大气