1 Mondaic AG,瑞士苏黎世 2 IMP Bautest AG,瑞士 Oberbuchsiten 3 苏黎世联邦理工学院建筑材料研究所,瑞士苏黎世 *通讯作者,电子邮件地址:lion.krischer@mondaic.com 摘要 对于老化基础设施的维护,可靠的钢筋混凝土和预应力混凝土结构无损评估技术至关重要。一个特别感兴趣的领域是评估后张混凝土中肌腱管道内的灌浆质量。检测塑料或金属管道中的空隙和充水空腔具有挑战性,特别是在较深处或钢筋附近。基于弹性波的传统无损检测方法,例如使用合成孔径聚焦和/或信号相位分析的冲击回波或超声脉冲回波法,通常对这些缺陷缺乏灵敏度和/或依赖于对复杂数据的手动和主观解释。为了克服这些问题,我们提出了一项基于全波形反演的综合可行性研究,以实现可靠的超声无损检测。全波形反演是一种强大的成像技术,它可以根据超声测量推断出材料特性的断层重建。该方法广泛用于基于地震波的地球物理应用,最近在超声检测应用中受到越来越多的关注。使用数字孪生,我们展示了空隙和水夹杂物对 s 的影响
高烈度地震区隧道穿越活动断层时往往会遭受严重的震害,强震作用下断层运动可分为断层运动和地震运动,二者均对隧道结构的稳定性产生重要影响。然后,开展缩比模型振动台试验,研究正断层作用下隧道柔性接头的抗震性能,设计了相似关系、边界条件、传感器布置、输入地震波和柔性接头设计等试验关键参数。试验结果表明,分段衬砌间的接头会使结构发生局部损伤而非整体损伤,且与地震运动相比,断层运动对隧道结构的损伤更为严重;正断层作用下,上盘衬砌比下盘衬砌更容易发生损伤破坏,柔性接头可以适应强震时断层的差异变形。最后,隧道衬砌的动态响应表明,隧道上部结构主要承受较强的地震荷载,而下部结构在强震下可能会发生断层运动的施加变形。因此将柔性接头分段隧道衬砌的设计方法应用于隧道结构设计中,以提高隧道结构穿越活断层时适应变形的能力。
CO1:应用矩阵理论和向量微积分的概念。 CO2:开发求解微分方程的分析方法。 CO3:应用有限差分和有限体积法求解微分方程。 CO4:在工程问题中实施分析和计算技术。矩阵线性方程组的数学运算、一致性 - 向量空间、线性相关性和独立性、基础和维度 - 线性变换 - 投影 - 正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解。矢量场、线积分、曲面积分 - 变量变换、格林定理、斯托克斯定理和散度定理。常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统 - 偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/python 进行 ODE 和 PDE 的数值实现 - ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘 - 标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该计划相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料中的热传导、扩散的相场解(Allen Cahn 1D 解)、两个或多个分子与 Lennard-Jones 势相互作用的解等。
简介:地震会对基础设施造成大规模破坏并造成人员伤亡。从 1990 年到 2010 年,印度经历了 9 次以上大地震,造成约 30,000 人死亡。虽然某些地区(例如 IS 1893(第 1 部分)-2016 规定的地震区 V 中的地区)更容易发生地震,但印度没有一个地区可以完全免受这种威胁。每天都会发生许多小地震。过去地震中建筑物的糟糕表现暴露了它们的脆弱性,促使工程师和建筑师优先设计更具抗震效率的结构。印度约 60% 的陆地面临中度至极重度地震的风险。人口稀少地区的大地震造成的破坏可能小于人口稠密地区的中度地震。大地震后的实地调查显示,大多数人员伤亡是由于建筑物倒塌造成的。缺乏抗震知识及其在建筑设计和施工中的应用导致结构失效。许多农村和城市建筑都是低层、非工程结构,最容易受到损坏。地震期间,地震波向四面八方辐射,水平振动尤其容易导致结构损坏。这些波会导致建筑物地基移动,从而在结构构件中产生惯性力。建筑物在地震中的抗震性能受其形状、大小和几何形状以及载荷路径特性的影响。抗震设计抗震设计理念旨在保护结构和人的生命。它要求承重构件在轻微、频繁的震动中保持完好无损,在中等、偶尔的震动中承受可修复的损坏,并在罕见的强烈震动中承受严重损坏而不倒塌。本研究考察了这些常见建筑类型的施工实践。在必要时,参考规范规定,为当地施工实践提供了建议。此外,本研究还讨论了抗震技术的潜在未来趋势。研究目标:本研究旨在调查地震对传统建筑和抗震建筑的影响。此外,该项目还旨在研究增强建筑结构抗震能力的先进材料及其开发方法。更具体的目标包括:
总课时:52 课程成果: CO1:应用矩阵理论和向量微积分的概念 CO2:开发求解微分方程的分析方法 CO3:应用有限差分和有限体积方法求解微分方程 CO4:在工程问题中实施分析和计算技术 矩阵的数学运算、线性方程组、一致性、向量空间、线性相关和独立性、基和维数、线性变换、投影、正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解、矢量场、线积分。曲面积分、变量变换、格林定理、斯托克斯定理和散度定理 常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统。偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/Python 进行 ODE 和 PDE 的数值实现:ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘、标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该项目相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料的热传导、扩散的相场解(Allen Cahn 1D 解)、具有 Lennard-Jones 势的两个或多个分子相互作用的解等。参考文献:[1] Lay, DC, Lay, SR 和 McDonald, JJ,2016 年,《线性代数及其应用》。Pearson,美国。[2] Kreyszig, E.,2011 年,《高等工程数学》,Wiley,印度。[3] Simmons, GF,2011 年,《微分方程及其应用和历史记录》,McGraw Hill,美国。[4] Sneddon,印第安纳州,2006 年,《偏微分方程元素》,多佛,美国。 [5] Rao, KS,2010 年,《偏微分方程简介》,Prentice-Hall,印度。[6] Butcher, JC,2003 年,《常微分方程的数值方法》,Wiley,美国。[7] Thomas, JW,2013 年,《数值偏微分方程:有限差分法》,Springer,瑞士。[8] Versteeg, HK 和 Malalasekera, W.,2007 年,《计算流体力学简介:有限体积》
光纤传感在油气井中的应用。光纤传感有可能彻底改变油气行业的油井和油藏监测。光纤传感器的被动特性、安装成本低廉的潜力以及沿光纤整个长度进行密集分布测量的可能性,都为油气行业带来了诸多好处。安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和处理能力(将这些测量结果转化为有价值的信息)是任何传感系统的关键要素。基础由井中的合适光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。低成本、坚固耐用的询问单元是实现基于 FBG 的传感系统成本效益的关键因素之一。本文介绍了用于高温沙漠环境的此类询问单元的成功开发(第 3 章)。这一发展旨在促进低成本商业化实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 (DAS) 是一种完全分布式传感技术,它利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以解释为在整个光纤中实现准麦克风。DAS 近来备受关注,因为它在井下监测(例如压裂监测、流量监测)以及地球物理监测中具有潜在应用。本论文以地球物理应用为重点,描述了合适询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要提高光纤传感电缆对垂直于其轴向方向的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。然而,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,本论文阐述了一种新方法的开发:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保证延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以在井下环境中组合使用。由此产生的大量沿光纤连续的时间和距离测量为石油和天然气行业的稳健井和油藏监测提供了独特的机会。
光纤传感在油气井中的应用。光纤传感有可能彻底改变石油和天然气行业的油井和油藏监测。光纤传感器的被动特性、经济高效的安装潜力以及沿光纤整个长度进行密集分布测量的可能性带来了诸多好处。使用安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和将这些测量结果转化为有价值信息的处理能力是任何传感系统的关键要素。基础由井中合适的光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。实现具有成本效益的基于 FBG 的传感系统的关键因素之一是低成本且坚固的询问装置。介绍了用于高温沙漠环境的此类询问装置的成功开发(第 3 章)。这项开发旨在促进商业低成本实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 ( DAS ) 是一种完全分布式传感技术,利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以被解释为在整个光纤中实现准麦克风。DAS 最近受到广泛关注,因为它在井下监测中具有潜在应用,例如压裂监测、流量监测以及地球物理监测。本论文以地球物理应用为重点,描述了合适的询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要增强光纤传感电缆对垂直于其轴向方向撞击的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。但是,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,但本论文介绍了一种新方法的发展:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保障延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以组合在井下环境中。由此产生的沿光纤在时间和距离上连续的大量测量结果为石油和天然气行业的井和油藏监测提供了独特的机会。