EAGLE-1 任务旨在开发欧洲首个自主的端到端太空量子密钥分发 (QKD) 系统。该任务由欧洲航天局 (ESA) 和 SES 牵头,并与多个欧洲国家航天局和私人合作伙伴合作。最先进的 QKD 系统将包括 EAGLE-1 低地球轨道 (LEO) 卫星上的有效载荷、光学地面站、量子操作网络和密钥管理系统。EAGLE-1 项目代表了下一代量子通信基础设施的重要一步,它提供了宝贵的技术成果和任务数据,并为 EuroQCI 计划的发展做出了贡献。德国航空航天中心 (DLR) 的通信和导航研究所 (IKN) 是 EAGLE-1 任务的重要合作伙伴,参与了太空和地面部分元件的研究和开发。这里我们报告了 QKD 发射器(QKD 有效载荷的重要组成部分)的开发,以及光学地面站 Oberpfaffenhofen (OGS-OP) 的定制,以进行 EAGLE-1 的 IOT 阶段。对于空间部分,DLR-IKN 负责 QKD 发射器的设计,包括软件和固件的开发。该发射器生成量子态,用于实现基于光信号的 QKD 协议,该协议将传输到地面。对于地面部分,OGS-OP 将作为 EAGLE-1 的在轨测试地面站。凭借对一系列量子通信卫星的专业知识以及新实现,OGS-OP 将首次验证有效载荷、光链路和 QKD 系统的性能。我们介绍了 OGS-OP 为该任务所做的主要开发,其中包括实施升级的自适应光学系统以校正大气畸变并优化入射光与单模光纤的耦合。
所有传感器数据都关联、记录并叠加在数字地图上。新功能包括用于目标关联和过滤的集成船舶数据库以及用于方便分析和处理视频片段和相机快照的媒体中心。完整的任务数据集以数字方式记录,可以从机载任务系统检索,然后通过 MSS 7000 地面站或更全面的 MSS 7000 任务指挥中心在地面部分进一步分析和传播。地面部分还可以集成到现有 IT 环境中,为相关利益相关者提供对实时或存储的任务数据的安全网络访问。
第 1 章 Inmarsat 卫星通信系统 目录 页码 1.1 简介................................................................................................................................1 1.1.1 空间部分....................................................................................................................1 1.1.2 地面部分....................................................................................................................2 1.1.3 移动地球站.................................................................................................................4 1.2 Inmarsat-A 系统.......................................................................................................4 1.3 Inmarsat-B 系统.......................................................................................................4 1.4 Inmarsat-C 系统.......................................................................................................4 1.5 Inmarsat-E 系统.......................................................................................................5 1.6 Inmarsat-M 系统.......................................................................................................6 1.7 Inmarsat mini-M 系统................................................................................................6 1.8 Inmarsat Fleet 系统.....................................................................................................6 1.9 多信道操作.....................................................................................................................6 1.10 在岸对船方向使用 Inmarsat......................................................................................6 图 1-1 Inmarsat 卫星在地球静止轨道上的位置。......................................................1 图 1-2 为船对岸呼叫建立通信信道...............................................................1 图 1-3 不同 Inmarsat 系统的大小比较.......................................................5
摘要。本文介绍了在 X 波段工作的高度集成固态功率放大器 (SSPA) 的设计和开发。最后的放大级采用 GaN 技术实现。据作者所知,这是高功率放大器中首次采用垂直方向放置最后的放大级,这可以显著缩小器件的占用空间,同时保持高输出功率和 PAE。该器件使用通过 SPI 接口控制的定制 BIAS ASIC 对整个 RF 链进行全数字控制,确保 SSPA 的高灵活性和稳定性。SSPA 的工作频率范围为 8.025–8.4 GHz,输入功率范围为 –20 dBm 至 0 dBm,输出功率为 20 瓦,功率附加效率 (PAE) 高达 35%。虽然所介绍的 SSPA 的主要应用是地球观测 (EO),但它也可以用于地面部分,例如雷达应用。
我们在伽利略计划中的第一份合同是在 2002 年签订的,当时我们与 Surrey Satellite 合作,展示了他们的小型卫星如何提供可行的导航服务。这促使 Surrey 被选中供应欧洲第一颗导航卫星 Giove-A,以及 26 颗伽利略卫星中的 22 颗的有效载荷。工作迅速发展,2004 年我们被任命为地面部分设计的总承包商,涵盖控制 30 颗卫星的地面基础设施。我们目前正在实施地面基础设施的主要部分,包括管理太空卫星的实时系统和主要安全设施。我们的安全职责价值超过 1 亿欧元,包括交付管理加密密钥的系统和支持运营伽利略的政治机构。我们还为欧盟委员会(伽利略的所有者)和主要工业承包商提供安全咨询。
使用卫星或飞机进行环境监测、摄影测量、制图或资源管理需要高几何分辨率和多光谱方法,以满足现代高度指定的分析需求。因此,产生了高传感器数据速率(Reiniger,1997),对数据流的存储和传输到地面部分进行进一步处理和归档提出了严格的要求。然而,只有通过安装全球地面接收站网络,能够在数据接收期间实时记录数据流(如 ERS 卫星),或通过机载存储选定的全分辨率(SPOT 卫星)或低分辨率(ENVISAT 卫星)场景,才能实现数据集的全球获取。数据流的技术特性导致了专门用于记录和保存遥感数据的存储设备的开发。在从数据生成到最终应用或保存以供未来使用的过程中,高容量存储设备遵循数据流,如图 1 所示。原则上必须考虑以下不同的存储设备:
摘要。空间系统必须处理由空间和地面传感器收集的大量时空地球和空间观测数据。尽管通信中存在数据延迟,但数据收集速度非常快,并且建立了复杂的地面站网络来收集和存档遥测数据。地面部分接收到的数据可以提供给最终用户。除了存档数据之外,可用数据还为数据分析提供了机会,可以支持决策过程或为目标需求提供新的见解。不幸的是,对于从业者来说,识别空间领域数据分析的潜力和挑战并不容易。在本文中,我们反思并综合了现有文献的发现,并为在空间系统环境中建立和应用数据分析提供了综合概述。为此,我们首先介绍空间系统中采用的流程,并描述数据科学和机器学习过程。最后,我们确定了可以映射到数据分析问题的关键问题。
通往太空的所有道路都始于地面,也终于地面。不仅仅是因为卫星(目前)是在地球上建造的,而且地面部分是任何卫星通信网络的关键部分。不仅仅是天线、调制解调器、同轴电缆或光纤的集合——随着以前的硬件或手动流程转向软件,该系统正在经历快速变化。太空网络的“软件化”(用软件取代硬件+手动)正在彻底改变卫星通信网络的构建和运营方式——引入新的用例、灵活性和对网络、射频和物理层面威胁的弹性。通过软件实现的弹性也许最好用快速改变已部署卫星通信网络的运行特性的能力来说明。在军事规划人员和采购办公室正在努力实现的扩散式多轨道体制中,地面网络必须作为整体网络(一体化太空+地面作战)的一部分紧密协作。
3 《2019 财政年度约翰·麦凯恩国防授权法案》要求国防部提交一份报告,详细说明其建立单独的替代采购系统以进行国防太空采购的计划,包括采购太空飞行器、与此类飞行器相关的地面部分以及卫星终端。出版法律编号115-232,§ 1601(b)(1) (2018)。2020 年 5 月,空军提交了一份报告:《空军部,美国太空军的替代采购系统》(华盛顿特区:2020 年 5 月),以回应《2020 财年国防授权法案》附带的联合解释性声明。该报告指出,国防部尚未提交 2019 财年 NDAA 要求的计划报告,然后指示空军部长向国会国防委员会提交一份关于是否实施替代采购系统的报告,如果是,如何实施。165 国会建议H9793(2019 年 12 月 9 日)。