手部运动与几个相互连接的皮质区域的神经活动调制有关,包括初级运动皮质 (M1) 以及背侧和腹侧运动前皮质 (PMd 和 PMv)。局部场电位 (LFP) 提供了神经元放电和突触输入之间的联系。我们目前对对侧和同侧运动过程中 M1、PMd 和 PMv 中的 LFP 如何变化的理解并不完整。为了帮助揭示调制模式的独特特征,我们同时记录了两只用右手或左手执行伸手和抓握动作的恒河猴在这些区域的 LFP。在低频 (≤ 13 Hz) 和 γ 频率下,M1 中观察到最大的效应器依赖性差异。在运动前区域,与手部使用相关的差异仅存在于低频中。PMv 在指令提示期间在低频中表现出最大的增幅,而在运动执行期间表现出最小的效应器依赖性调制。在 PMd 中,δ 振荡在对侧伸手和抓握时较大,β 活动在对侧抓握时增加。相反,β 振荡在 M1 和 PMv 中减少。这些结果表明,虽然 M1 主要表现出效应器特定的 LFP 活动,但运动前区计算更多与效应器无关的任务要求方面,特别是在 PMv 的运动准备和 PMd 的产生过程中。精确手部运动的产生可能依赖于每个皮质区域所含独特神经调节模式中包含的互补信息的组合。因此,整合来自运动前区和 M1 的 LFP 可以提高脑机接口的性能和稳定性。
脉冲时间的影响是我们了解如何有效调节基底神经节丘脑皮质 (BGTC) 回路的重要因素。通过电刺激丘脑底核 (STN) 产生的单脉冲低频 DBS 诱发电位可以洞察回路激活,但长延迟成分如何随脉冲时间的变化而变化尚不清楚。我们研究了在 STN 区域传递的刺激脉冲之间的时间如何影响 STN 和皮质中的神经活动。在五名帕金森病患者的 STN 中植入的 DBS 导线被暂时外化,从而可以传递脉冲间隔 (IPI) 为 0.2 至 10 毫秒的成对脉冲。通过 DBS 导线和头皮 EEG 的局部场电位 (LFP) 记录来测量神经激活。 DBS 诱发电位是使用通过联合配准的术后成像确定的背外侧 STN 中的接触器计算的。我们使用小波变换和功率谱密度曲线量化了不同 IPI 对跨频率和时间的诱发反应幅度的影响程度。STN 和头皮 EEG 中的 DBS 诱发反应的 β 频率内容随着脉冲间隔时间的增加而增加。间隔 < 1.0 ms 的脉冲与诱发反应的微小变化相关。1.5 到 3.0 ms 的 IPI 使诱发反应显著增加,而 > 4 ms 的 IPI 产生适度但不显著的增长。当 IPI 在 1.5 到 4.0 ms 之间时,头皮 EEG 和 STN LFP 反应中的 β 频率活动最大。这些结果表明,DBS 诱发反应的长延迟成分主要在 β 频率范围内,并且脉冲间隔时间会影响 BGTC 电路激活的水平。
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
摘要 深部脑刺激是一种基于设备的神经外科技术方法,是治疗帕金森病运动障碍的独特而专门的方法。它的基本功能是减轻运动症状和恢复运动功能。然而,在脑的 STN 中插入小微电极是一项复杂的任务。嵌入微传感器(微电极)和编码 DBS 设备具有挑战性,并且是最终结果/临床结果的主要量化重要因素。本研究介绍了最新的科学成果——帕金森病研究,并强调了包罗万象的众所周知的网络与精确达到目标的 DBS 相结合的重要性。DBS 还为研究帕金森病大脑中各种皮层下结构的电活动(即振荡神经活动)提供了独特的机会。推进解剖结构和功能网络的目标,专注于病理神经活动的发明,将解决和改善 DBS 的临床结果并降低运动障碍。该研究还通过实验研究了目标皮层下结构和靶向方法的最新发现,并提出了全面细致的创新技术和创造性机制,这些技术和机制支持编码 DBS 技术并加速选择内置生物反馈信号中的参数期望,即 DBS 中整合的生物标志物和局部场电位,现在被定义为自适应闭环 DBS 系统。这些科学进步的重点是实现通过最不可能/最不可能的运动障碍来预防主要运动特征。增强对涉及病理神经元和神经活动的计算生成的解剖结构和功能网络的针对性将在临床和预后上推进 DBS 效应,并消除运动障碍和构音障碍(不良影响)。
目的:通过分析脑活动来区分帕金森病静止性震颤和不同的自主手部运动。方法:我们重新分析了 6 名帕金森病患者的丘脑底核的脑磁图和局部场电位记录。数据是在停用多巴胺药物(Med Off)和服用左旋多巴(Med On)后获得的。使用梯度提升树学习,我们将时间段分类为震颤、握拳、前臂伸展或无震颤静止。结果:单独的丘脑底核活动不足以区分四种不同的运动状态(平衡准确度平均值:38%,标准差:7%)。相比之下,皮质和丘脑底核特征的组合可以实现更准确的分类(平衡准确度平均值:75%,标准差:17%)。与仅基于丘脑底活动的分类相比,添加单个皮质区域平均可将平衡准确度提高 17%。在大多数患者中,信息量最大的皮质区域是感觉运动皮质区域。Med On 和 Med Off 下的解码性能相似。结论:只要除了丘脑底活动外还监测皮质信号,电生理记录就可以区分几种运动状态。意义:通过结合皮质记录、皮质下记录和机器学习,自适应深部脑刺激系统可能能够特异性地检测震颤并对几种运动状态做出充分反应。2023 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
癫痫发作预测是癫痫学的一大挑战。然而,人们致力于预测局灶性癫痫发作,而将全身性癫痫发作视为随机事件。在失神性癫痫大鼠的皮质丘脑系统八个位置采集包含数百个全身尖峰和波放电 (SWD) 的长持续时间局部场电位 (LFP) 记录,通过基于小波的算法在所有可能的两个或三个记录位置组合中进行迭代分析,计算小波能量信号同步性增加的乘积。比较了各种组合之间的预测灵敏度和误报率,并将真阳性和假阳性预测的小波谱输入随机森林机器学习算法以进一步区分它们。对皮层内和皮层丘脑 LFP 轨迹进行小波分析表明,与丘脑内组合相比,其误报数量明显较少,而基于体感皮层 IV、V 和 VI 层记录的预测在预测灵敏度方面明显超过所有其他组合。在对九只来自斯特拉斯堡的遗传性失神癫痫大鼠 (GAERS) 的 24 小时样本外记录中,包含 SWD 发生率的昼夜波动,通过训练后的随机森林对真阳性和假阳性进行分类,进一步将误报率降低了 71%,尽管在误报和预测灵敏度之间有所权衡,这反映在相对较低的 F1 分数值上。结果支持失神癫痫的皮层焦点理论,并得出 SWD 在一定程度上是可预测的结论。后者为闭环 SWD 预测预防系统的开发铺平了道路。概述了可能转化为人类数据的建议。
通过调节主要神经元的突触抑制 (I) 和兴奋 (E) 来稳态控制神经元的兴奋性在大脑成熟过程中非常重要。宫内大脑发育的基本特征,包括局部突触 E-I 比率和生物能量学,可以通过表现出高度规则的嵌套振荡网络事件的脑类器官 (CO) 来建模。因此,我们评估了一个“Phase Zero”临床研究平台,该平台结合了宽带可见光/近红外 (NIR) 光谱和电生理学,研究基于局部场电位光谱指数的 E-I 比率和基于线粒体细胞色素 C 氧化酶 (CCO) 活性的生物能量学。我们发现健康对照 iPSC CO 的年龄从 23 天到 3 个月对 CCO 活动 (卡方 (2, N = 10) = 20, p = 4.5400e−05) 和 30–50 Hz 之间的频谱指数 (卡方 (2, N = 16) = 13.88, p = 0.001) 有显著影响。此外,在来自精神分裂症 (SCZ) 患者 iPSC 的 34 天大的 CO 中,发现胆碱 (CHO)、艾地苯 (IDB)、R-α-硫辛酸加乙酰-l-肉碱 (LCLA) 等药物对 CCO 活性 (卡方 (3, N = 10) = 25.44, p = 1.2492e−05)、1 至 20 Hz 之间的光谱指数 (卡方 (3, N = 16) = 43.5, p = 1.9273e−09) 和 30–50 Hz (卡方 (3, N = 16) = 23.47, p = 3.2148e−05) 有显著影响。我们提出了一种多模式方法的可行性,该方法结合了电生理学和宽带可见光-近红外光谱,用于监测脑器官模型中的神经发育,可以补充传统的药物设计方法来检验具有临床意义的假设。
在帕金森病 (PD) 中,病理性高水平的 β 活动 (12-30 Hz) 反映了特定的症状,并通过药物或手术干预恢复正常。尽管接受深部脑刺激 (DBS) 的 PD 患者丘脑底核 (STN) 中的 β 特征现已转化为自适应 DBS 系统,但只有有限数量的研究表征了苍白球内部 (GPi) 中的 β 功率,而苍白球内部是同样有效的 DBS 目标。我们的目标是比较接受 DBS 的 PD 患者在休息和运动时 STN 和 GPi 中的 β 功率。37 名人类女性和男性参与者完成了一项简单的行为实验,包括休息和按下按钮的时间,从而从 19 个(15 名参与者)STN 和 26 个(22 名参与者)GPi 核中记录局部场电位。我们检查了整体 beta 功率以及 beta 时域动态(即 beta 爆发)。我们发现 GPi 在静息和运动期间的 beta 功率更高,运动期间 beta 失同步也更多。beta 功率与运动迟缓和僵硬严重程度呈正相关;然而,这些临床关联仅存在于 GPi 队列中。关于 beta 动态,GPi 和 STN 中的爆发持续时间和频率相似,但 GPi 爆发更强且与运动迟缓-僵硬严重程度相关。因此,不同基底神经节核的 beta 动态不同。相对于 STN,GPi 中的 beta 功率可能更容易被检测到,随着运动而发生更多调节,并且与临床损伤更相关。总之,这可能表明 GPi 是基于 beta 的自适应 DBS 的潜在有效目标。
摘要 目的。检测神经信号的方法涉及侵入性、时空分辨率和记录的神经元或脑区数量之间的折衷。基于电极的探针提供了出色的响应,但通常需要经颅布线并捕获有限神经元群的活动。脑电图和脑磁图等非侵入性方法分别提供场电位或生物磁信号的快速读数,但具有空间限制,禁止从单个神经元进行记录。增强神经源性磁场的细胞大小的装置可用作基于磁的模式的原位传感器,并提高检测跨多个脑区不同信号的能力。方法。我们设计并建模了一种能够与单个神经元形成紧密电磁连接的装置,从而通过驱动电流通过纳米制造的电感元件将细胞电位的变化转化为磁场扰动。主要结果。我们使用从体外膜片钳神经元获取的信号和几何形状进行真实的有限元模拟,对设备性能进行了详细的量化,并展示了该设备产生可通过现有模式读取的磁信号的能力。我们将设备的磁输出与内在神经元磁场 (NMF) 进行了比较,并表明单个神经元的传导磁场强度在峰值时高出三倍多(1.62 nT vs 0.51 nT)。重要的是,我们报告了典型体素 (40 × 40 × 10 µ m) 内传导磁场输出的空间增强,比内在 NMF 强度高出 250 倍以上(0.64 nT vs 2.5 pT)。我们使用此框架根据纳米制造约束和材料选择对设备性能进行优化。意义。我们的量化为合成和应用用于检测大脑活动的电磁传感器奠定了基础,可以作为在单细胞水平上量化记录设备的通用方法。
深部脑电神经反馈可使帕金森病患者控制病理振荡并加快运动 作者:Oliver Bichsel 1,2,3,4、Lennart H. Stieglitz 3,4、Markus F. Oertel 3,4、Christian R. Baumann 2,4、Roger Gassert* 1、Lukas L. Imbach*、2,4(*共同资深作者) 1. 瑞士苏黎世联邦理工学院健康科学与技术系康复工程实验室 2. 瑞士苏黎世大学医院神经内科 3. 瑞士苏黎世大学医院神经外科 4. 瑞士苏黎世大学医院临床神经科学中心 摘要 帕金森病运动症状与基底神经节病理性增加的 β 振荡有关。虽然药物治疗和深部脑刺激 (DBS) 可以同时减少这些病理性振荡和改善运动表现,但我们着手探索神经反馈作为一种内源性调节方法。我们实施了深部脑电神经反馈,通过植入的 DBS 电极测量病理性丘脑底振荡的实时视觉神经反馈。所有 8 名患者在训练后几分钟内有意识地控制持续的 β 振荡活动。在一次一小时的训练中,β 振荡活动的减少逐渐增强,并加速了手部运动。最后,即使在去除视觉神经反馈后,仍然可以对深部脑活动进行内源性控制,这表明神经反馈获得的策略在短期内得以保留。当 2 天后应用学到的心理策略时,我们观察到了类似的运动改善。即使在没有实时神经反馈的情况下,进一步改善深部脑神经反馈可能会通过改善症状控制使帕金森病患者受益。关键词:β 能量、深部脑刺激、神经反馈、局部场电位、运动迟缓、帕金森病