恶意无人机事件 87 空间服务中断 89 定位、导航和授时 (PNT) 服务丢失 91 所有固定和移动通信形式同时丢失 93 国家电力传输系统 (NETS) 故障 95 电网区域故障 97 天然气供应基础设施故障 99 民用核事故 101 海外核电站的辐射泄漏 103 运输、被盗或丢失货物的辐射暴露 105 系统重要性零售银行的技术故障 107 英国关键金融市场基础设施的技术故障 109 陆上重大危险源 (COMAH) 场所的意外火灾或爆炸 111 陆上重大危险源 (COMAH) 场所意外泄漏大量有毒化学品 113 海上石油或天然气设施的意外火灾或爆炸 115 陆上燃料管道的意外火灾或爆炸 117 陆上重大事故 119 危险管道的意外火灾或爆炸(实验室)释放危险病原体 121 水库/水坝坍塌 123 水利基础设施故障或饮用水损失 125 食品供应污染 127 重大火灾 129
➀ AP ArmaFlex 厚度为 1 英寸,符合 CAN/ULC S102 标准。➁ AP ArmaFlex 厚度为 1 英寸,符合 MIL-P-15280J、FORM S 和 MIL-C-3133C (MIL STD 670B) 级 SBE 标准。➂ 按照 ASTM C 411“高温绝缘材料表面性能测试方法”进行测试时,AP ArmaFlex 和 AP ArmaFlex FS 板材和卷材绝缘材料可承受 250°F (121°C) 的温度。在此温度下,AP ArmaFlex 板材和卷材绝缘材料未出现燃烧、发光、阴燃、分层、熔化或绝缘材料坍塌的迹象。虽然这种绝缘材料可以承受高温,但连续使用温度应限制在 220°F (105°C)。➃ AP ArmaFlex FS 采用 EPDM 橡胶配制而成,因此其上限使用温度高于 AP ArmaFlex。 ➄ 当温度低于 -20°F (-29°C) 时,弹性绝缘材料开始变得不那么灵活。但是,此特性不会影响 ArmaFlex 绝缘材料的热效率和抗水蒸气渗透性。➅ 对于 -40°F 至 -297°F (-40°C 至 -183°C) 的应用,请联系 Armacell。
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列规模越来越大的实验,以研究船舶框架和格架在横向载荷作用下的塑性行为。初始测试以单个框架进行,固定在两端,并在中心或两端附近施加小块载荷,以便研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单个框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,位于 6.8mx 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和断裂)与整体塑性坍塌之间存在许多有趣的关系。本文讨论了对设计(尤其是基于目标的设计)的影响。
合理设计的概念包括基于科学而非经验程序对所有载荷进行全面确定,以便将不确定因素降至最低。这种方法包含这样一种思想,即结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂缝、完全坍塌或拉伸失效(第二章)。合理设计的概念。人们认为船体的设计符合概率方法,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计是将故障概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题要复杂得多,本文不再讨论。
合理设计的概念包括基于科学而非经验程序对所有载荷进行全面确定,以便将不确定因素降至最低。这种方法包含这样一种思想,即结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂缝、完全坍塌或拉伸失效(第二章)。合理设计的概念。人们认为船体的设计符合概率方法,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计是将故障概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题要复杂得多,本文不再讨论。
合理设计的概念包括基于科学而非经验程序对所有载荷进行全面确定,以便将不确定因素降至最低。这种方法包含这样一种思想,即结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂缝、完全坍塌或拉伸失效(第二章)。合理设计的概念。人们认为船体的设计符合概率方法,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计是将故障概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题要复杂得多,本文不再讨论。
摘要 富尔奈斯火山是世界上最活跃、游客最多的火山之一。其山顶火山口(Crate`re Dolomieu)是主要的旅游景点,2007 年发生了一次重大火山口坍塌,其边缘尚未稳定。为了评估火山口边缘对游客的不稳定风险,我们跟踪了 2007 年至 2015 年的结构演变。利用航空摄影测量活动,我们非常精确地绘制了不稳定地点的地图,对这些不稳定性的时间演变进行了定量分析,并评估了游客的风险。考虑到 2008-2015 年期间,靠近火山口边缘的四个地点表现出显著的水平地面运动(0.5-2 米)、裂缝加宽(平均 0.3-0.56 米)和大规模物质流失量(总计 1.8 + 0.1 � 10 6 立方米)。我们推断出两个不同的过程:(1)在西部和北部,玄武岩单元的倾倒发生在裂缝加宽期之后,这是由于岩浆侵入和长期膨胀/收缩循环的共同作用;(2)在南部和东部,火山口边缘的部分缓慢向火山口中心滑动,在火山活动增强期间(2008-2010 年和 2014-2015 年)显著加速。官方观测台是俯瞰 Crate`re Dolomieu 最稳定的区域。相比之下,官方平台外最常访问的边缘区域(西北部)也是最不稳定的。
太空探索的主要挑战之一是妥善保护宇航员免受太空环境的危害。因此,宇航服是为了在舱外活动期间保护机组人员而设计的,但它们目前无法妥善承受微流星体和轨道碎片 (MMOD) 等撞击造成的损坏,如果被刺破,它们会减压和坍塌,造成灾难性的后果。在这种情况下,将自修复材料整合到宇航服中的可能性引起了科学界的关注,因为它可以实现自主损伤修复,从而提高安全性和使用寿命。然而,太空环境对这些材料的影响仍有待确定,并可能导致其整体性能显著下降。本文介绍的研究重点是应用于宇航服的第一个例子,分析了一组候选自修复聚合物在暴露于模拟太空辐射之前和之后的修复性能。在未辐照的情况下,还对双层膜和以这些聚合物为基质的纳米复合材料进行了比较。本研究还旨在通过将自修复材料的标准表征(例如:划痕、冲击和穿刺测试)与空间辐射对其影响的评估相结合,填补这两个方面的空白。了解辐射是否以及如何影响损伤恢复性能,实际上是确定给定的自修复材料是否真的可以用于太空应用的基础。通过穿刺损伤后的现场流速测量来评估自修复响应。收集最大和最小流速、它们之间的时间以及穿刺后 3 分钟内损失的空气量作为修复性能参数。对于纯材料,然后在伽马射线辐照样品上重复相同的测试,以研究暴露于模拟空间辐射后自修复性能的变化。结果表明,粘性响应较低的系统的修复性能较高,辐照后修复性能会降低。因此,需要进一步分析空间环境对所呈现材料的影响。 NASA HZETRN2015(高 Z 和能量传输,2015 版)软件也用于模拟舱外活动期间银河宇宙射线对航天服的作用。将经典的航天服多层与将标准内胆替换为每种分析材料层的配置进行比较,以确定最有希望的候选者,并确定添加纳米填料是否会显着提高屏蔽能力。
CAES 技术的比较和替代方案 在讨论绝热 CAES(例如 Storelectric 提出的技术)时,了解不同类型的 CAES 非常重要 — 本质上是传统、等温和绝热,以及这些类型的变体。它们的性质非常不同,尤其是绝热 CAES 经常与等温 CAES 混淆,例如 Lightsail、SustainX 和 General Compression 提出的 CAES。事实上,两者根本不同。请注意,所有效率均引用电网到电网和寿命,而电池通常引用端到端 [忽略辅助负载] 和第 1 天 [忽略退化]。还要注意,电池往往会引用不包括土地、电网连接、开发成本等的安装成本,而这些都包含在 Storelectric 的所有估算中。 CAES 压缩空气能储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 — 通常为 70bar。当再次需要能量时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的空气,因此采用地质储存;现有的CAES 采用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过盐穴坍塌的情况。盐穴是人工建造的,位于盐盆内,世界各地都有。传统CAES 将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统的CAES 会将压缩热浪费在冷却塔中。然而,在大约环境温度下从 70bar 膨胀会使空气冷却至约 -150 o C。这不仅会冻结环境,还会冻结设备,从而破坏设备,因此需要重新加热。传统的 CAES 通过燃烧气体来吸收膨胀热量。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使涡轮机更省油。但它仍然燃烧同等规模发电站 50-60% 的天然气(对于 McIntosh;Huntorf 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备希望达到约 54%。由于膨胀是通过经过特殊改造的涡轮机进行的,因此传统的 CAES 仅适用于固定尺寸。Storelectric 的 CCGT CAES 是传统的(“CCGT” 因为它基于联合循环发电站的设计),但具有以下优点:
绝热与等温CAES 在讨论绝热CAES(例如 Storelectric 所提出的CAES)时,人们经常将其与等温CAES(例如 Lightsail、SustainX 和 General Compression 所提出的CAES)混淆。事实上,这两者有着根本的不同。CAES 压缩空气储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 – 通常为 70bar。当再次需要能源时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的压缩空气,因此使用地质储存;现有的CAES 使用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过此类盐穴坍塌的情况。盐穴是人工建造的,盐盆地遍布世界各地。传统压缩空气储能系统将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统压缩空气储能系统会将压缩热浪费在冷却塔中。然而,在大致环境温度下从 70bar 膨胀会将空气冷却到 ~-150 o C。这不仅会冻结环境,还会冻结设备,从而毁坏设备,因此需要将热量重新放回去。传统压缩空气储能系统通过燃烧气体来释放膨胀热。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使燃气轮机更节省燃料。但它燃烧的天然气仍是同等规模发电站的 50-60%(McIntosh 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备渴望达到 ~54%。因为膨胀是通过经过特殊改装的涡轮机进行的,所以传统的 CAES 只有固定尺寸的。等温 CAES 等温 CAES(Lightsail、SustainX、General Compression)意识到压缩空气的最有效方式是在恒定的低温下。因此,他们发明了新型压缩机,可在 ~40 o C 时提取热量。然而,这只考虑了半个周期:提取的热量无法在系统内使用,因此被浪费了。这留下了与传统 CAES 相同的膨胀问题,他们声称通过从环境中吸收热量来解决这个问题:温度足够低,(例如)热泵或工业废热可以提供它。但所需的热量之多,将使任何此类清除工作都难以完成,除非是在非常特殊的地点,例如使用冶炼厂的废热。而且,新型膨胀机还不够完善;而新型压缩机也无法最大限度地提高效率、成本效益或可靠性。绝热 CAES 绝热 CAES 在整个压缩和膨胀循环中平衡热量,储存压缩热量以便在膨胀期间重复使用。RWE 已停用的 Adele 提案 https://www.youtube.com/watch?v=K4yJx5yTzO4(2'39” 视频)中展示了其原理,该提案建议将压缩热量储存在布满毛细管的陶瓷存储器中,以通过陶瓷扩散热量。砖块是陶瓷的。这实际上是两个夜间储热加热器,每个加热器都有一座塔楼那么大,它会膨胀和收缩,摩擦成灰尘(从而堵塞任何可以进入的通道)并压碎毛细管,导致非常高的维护成本和频繁的长时间停电以重建存储器。建造和隔热这样的容器成本高昂。 Storelectric www.storelectric.com 开发了其专有的绝热技术,该技术效率高(40MW 时效率约为 62%,500MW 时效率可提高至约 67%),可利用现有技术建造,经济高效,并已获得 Costain、Fortum、西门子和 Mott MacDonald 等众多跨国工程公司的认可。由于它使用“现成的”压缩机和膨胀机,因此非常可靠,几乎可以建造任何配备此类压缩机和膨胀机的规模。