金属氧化物气体传感器是流行的化学主义传感器。它们用于许多任务,包括Envi Ronmental和安全监控。一些气体感应材料具有光诱导的特性,可通过在光照射时修饰传感器的选择性和灵敏度来增强气体检测。在这里,我们介绍了高度纳米孔Cu 2 o薄膜的气体传感特性,朝向电取(第2号)和亲核(C 2 H 5 OH,NH 3)在环境温度下的气体分子,并通过可见的光照明不同颜色的光照明(红色:632 Nm,Green:530 Nm,blue,blue:468 nm)。Cu 2 O膜是通过反应性高级气体沉积(AGD)技术制造的。样品的表面和结构分析证实了混合氧化铜相的纳米多孔薄膜的沉积。Cu 2 O的气体传感性能在亲电和亲核气体暴露时表现出预期的P型半导体行为。我们的结果表明,可见光照明提供了增强的传感器响应。
电掺杂的半导体聚合物中的柜台与电子载体之间的相互作用对于电荷载体,电子电导率和热稳定性的定位至关重要。在半导体聚合物中引入dianions会导致双重掺杂,其中有两个电荷载体。双重兴奋剂可最大程度地减少结构畸变,但会改变载体和反面之间的静电相互作用。用鳄鱼酯木体的聚合物离子液体(PIL)用于研究抗衡离子在P型半导体聚合物中的作用。pils阻止了离子交换过程中阳离子扩散到半导体聚合物中。氧化还原活性的鳄鱼酯木体经历离子交换,并取决于其电离能量。crococonate dianions可以减少聚噻吩的聚掺杂膜,但与较低电离能的聚噻吩和四乙二醇侧链P(G 4 2T-T)进行离子交换。Crococonate Dianion在P(G 4 2T-T)中保持结晶顺序,并导致电导率的激活能低于PF 6
摘要:这项工作旨在研究立方SR 3 Mn(M = P和AS)抗渗透岩的电子,弹性,光学和热电特性。在这项工作中首次研究了立方SR 3 Pn的特性,而SR 3 ASN的特性与文献中的其他理论结果进行了比较。在整个研究中,都使用了具有GGA-PBE功能的量子意式浓缩(QE)包中实现的密度功能理论(DFT)。sr 3 pn和sr 3 ASN被发现在化学和机械上稳定,优化的晶格参数分别为5.07Å和5.11Å。的结果还表明,两种化合物是P型半导体,直接带隙为0.56 eV,对于各个化合物为0.45 eV。还预计材料具有出色的光学特性,包括在可见的和紫外线区域中以10 5 cm -1的高度吸收,因此是有希望的光电材料。此外,这两种材料的计算出的热电性能强烈表明两种材料是热电应用的潜力。
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
摘要:信息技术的快速进步增强了人们对互补设备和电路的兴趣。常规的P型半导体通常缺乏足够的电性能,从而促使人们寻找具有高孔迁移率和长期稳定性的新材料。元素柜(TE)具有一维手性原子结构,由于其狭窄的带隙,高孔迁移率和在工业应用中的多功能性,尤其是在电子产品和可再生能源方面,因此出现了有前途的候选人。本评论重点介绍了纳米结构和相关设备的最新进展,重点是合成方法,包括蒸气沉积和水热合成,它们产生了纳米线,纳米棒和其他纳米结构。在光电探测器,气体传感器和能源收集设备中的关键应用被引起了人们的注意,并特别强调了它们在物联网(IoT)框架(IoT)框架中的作用,这是一个快速增长的领域,正在重塑我们的技术环境。也突出显示了基于TE的技术的前景和潜在应用。
它的内部结构与其他二极管不同,因为它仅由N型半导体材料组成,而大多数二极管都由P和N掺杂区域组成。因此,它在两个方向上进行进行,并且不能像其他二极管一样整流交替的电流,这就是为什么某些来源不使用二极管术语,而是更喜欢TED的原因。在Gunn二极管中,存在三个区域:每个端子上有两个区域,其中两个区域在它们之间,它们之间有一层薄的n掺杂材料。当将电压施加到设备上时,电梯度将在整个薄层中最大。如果电压增加,则层的电流将首先增加。最终,在较高的场值下,中间层的导电性能发生了变化,增加了电阻率并导致电流下降。这意味着Gunn二极管在其电流 - 电压特性曲线中具有负差分电阻的区域,其中施加电压的增加会导致电流减小。此属性允许其放大,充当射频放大器,或者在偏向DC电压时变得不稳定和振荡。
点缺陷:(零维缺陷)是由于原子在结晶过程中偏离正常位置、存在杂质原子或原子处于错误位置而产生的。这些缺陷很小,其影响范围向所有方向扩展,但仅限于小有序(两个或三个原子级)的特定区域。空位:原子从其原始晶格位置缺失。通常由于结晶过程中的热振动而产生,并受外部参数的影响。空位可能是单个、两个或更多个,具体取决于晶体类型。对于大多数晶体,为了产生一个空位,需要 1.1 eV 的热能。间隙:当相同或不同类型的原子占据规则原子位置之间的空隙时,就会出现这种缺陷。杂质原子:不属于母晶格(原始晶体)的原子。取代缺陷:当杂质原子取代或替代母原子时,就会出现这种缺陷。例如:黄铜中的锌是铜晶格中的替代原子 间隙杂质:当尺寸较小的杂质原子位于常规原子位置之间时,就会产生这种缺陷。例如:当将五价和三价杂质添加到纯 Si 或 Ge 中时,我们会得到 n 型和 P 型半导体。
材料的低导热率是其潜在应用在高性能热电设备中的关键基本参数。在室温下实验可获得今元(GE 1 -x sn x)半导体薄膜的纯度低电导率。在宽松的GE 1 -x Sn X二进制合金中,导热率随着SN浓度的增加而降低,这主要是通过合金通过合金增加原子之间的原子间距离来解释。在宽松的GE 1 -x sn X中,从58 w m -1 k -1中明显降低了20次,从58 w m -1 k -1降低到≈2.5w m -1 k -1,观察到sn含量最高为9%。该热导率仅比最先进的热电材料(胞晶硒酸硒酸盐)高2倍。ge 1-x sn x是一种无毒的组IV型半导体材料,它是使用半导体行业标准表育观生长技术的标准硅晶片上的外延生长的。因此,它可以导致期待已久的高性能低成本热电产生器,用于在人类日常生活中的室温应用,并将为CO 2发射和绿色的电力发电中的全球效果做出重大贡献。
Si的光子集成电路,其中光学组件是单层集成在SI集成电路上的,有望在未来的信息和通信技术基础架构中占主导地位。由主动组件和被动组件组成的SI光子(SIPH)技术已经在大量应用中广泛使用,范围从DataCom到检测系统。最近,SIPH进入了集成量子技术,光学计算和人工智能的新兴领域中的低温应用技术平台。尽管如此,可以仅使用组IV半导体制造的有效的电泵光源仍然是一个重大挑战。通过将半金属的替代掺入替换为GE晶格而获得的新型GESN和Sigesn半导体可获得比其他组IV型半导体合金提供的一些优势:通过正确选择合金组成和外部材料,这些材料将这些材料转化为基本直接型号的单个型号bardgap semiciccaptors。第四组通常缺少的此属性使(SI)GESN系统对有效的光源非常有吸引力。使用该材料系统,近年来达到了IV激光的主要里程碑,例如光学抽水散装和多Quantum Wells(MQW)激光器的激光器,直至室温。
随着功率转化效率的快速进展,钙钛矿太阳能电池(PSC)表现出巨大的潜力,因为下一代低成本,有效的太阳能电池设备。超薄的纯净和broded的Mote 2单层材料是钙钛矿太阳能电池应用中替代电子传输材料的有前途的候选物。基于流行的密度功能理论(DFT),使用投影仪增强平面波(PAW)计算了这些材料的电子特性。使用Pardew-Burkeernzerhof广义梯度近似(PBE-GGGA)计算这些特性。使用完全相对论的自旋轨道耦合(SOC)确定了所考虑材料的带状结构。我们的结果表明,纯和BR掺杂的2D-MOTE 2是N型半导体,直接带隙能量分别为1.01和1.21 eV。提供了材料的光学特性,例如相对介电常数,传输和反射率。使用这些属性,使用1-D太阳能电池电容模拟器(SCAPS-1D)软件来设计基于单层纯和BR掺杂的Mote 2作为电子传输层(ETL)的太阳能电池。这些细胞的最大效率为13.121%,V OC为1.067 V和1.186 V,J SC的V OC为21.678 Ma/cm 2和25.251 MA/CM 2,而FF的FF为56.720%和56.720%和80.139%的FF,以及80.139%的纯度和80.139%的纯度和BR-pure and Br-doped Ets。我们的太阳能电池的性能与传统的基于SI的太阳能电池相媲美。结果显示了单层纯和掺杂的MOTE 2如何用作钙钛矿太阳能电池的合适ETL材料。