基于这些特性,金属和金属合金被用作承重植入物。其中,钴铬合金、不锈钢、钛和钛合金被广泛用于多种生物医学应用。特别是,钛及其合金的弹性模量接近骨骼,密度低于钴铬合金和不锈钢。[2,3] 此外,与纯钛相比,钛合金具有更高的机械性能,使其特别适合用作骨科和创伤植入物。然而,钛和钛合金被认为是生物惰性材料,即它们不会与人体周围组织发生化学或生物反应。[4] 此外,涉及钛合金(即 Ti6Al4V 合金)的腐蚀现象会导致释放对人体有害的 Al 和 V 合金。为了促进植入物与现有人体骨组织的骨整合,从而优化装置的整合,在植入物表面生长涂层可能是一种合适的方法。尤其对于钛和钛合金,火花阳极氧化是一种合适的技术,可在基体上生长出牢固粘附的多孔陶瓷涂层,最大限度地减少可能导致骨溶解的剥落现象。在此背景下,已研究了多种策略来增强钛合金的生物活性,从而增强其骨整合。[5–7] 文献中有充分的证据表明,羟基磷灰石 (HA,Ca 10 (PO 4 ) 6 (OH) 2 ) 的存在可以增强外来生物材料的骨整合,因为它与硬组织和软组织具有很高的生物相容性。[8] 因此,诱导 HA 的结合或生长已被证明是提高材料生物活性的一种好策略。例如,这可以通过电化学转化涂层工艺(如火花阳极氧化)通过精确调整操作条件(形成电压、电解质浴成分等)来实现。 [3,9,10] 此外,Ti6Al4V 合金表面生长一层厚的阳极氧化层可以提高其耐腐蚀性能
磁流变 (MR) 阻尼器”,振动工程与技术杂志 (IF 0.35),第 9 卷,第 161-176 页,2021 年,https://doi.org/10.1007/s42417-020-00218-1。30. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2021 年)。“天然纤维增强弹性体基生物复合材料在牺牲结构应用中的损伤力学和能量吸收能力”,国防技术,17 (1),161-176,DOI:https://doi.org/10.1016/j.dt.2020.02.013(SCIE 索引,IF:2.637)。 31. C. Durga Prasad、Sharnappa Joladarashi、MR Ramesh、MS Srinath 和 BH Channabasappa。 “沉积在钛基体、硅上的 HVOF 涂层和微波处理的 CoMoCrSi-WC + CrC + Ni 和 CoMoCrSi-WC + 12Co 复合涂层的微观结构和滑动磨损性能比较 (2020)。https://doi.org/10.1007/s12633-020-00398-1。32. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2019)“黄麻/橡胶基柔性‘绿色’复合材料的附着力、柔韧性、层间剪切强度和损伤机理的实验研究”,热塑性复合材料杂志,DOI:10.1177/0892705719882074(SCIE 索引,IF:1.59 和 Scopus 索引)。 https://doi.org/10.1177/0892705719882074 33. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2020),“纤维缠绕玻璃/环氧复合材料吸水后的机械行为研究以及使用田口方法的摩擦学研究”,爱思唯尔材料今日论文集。 https://doi.org/10.1016/j.matpr.2020.02.834 34. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2019)“纤维缠绕玻璃/环氧复合材料的摩擦机械和物理特性”。材料研究快报(IF 1.44),(2019),DOI:10.1088 / 2053-1591 / ab3685。
1. B. Dankesreiter*、C.-D. Yeo a),“粗糙电极与结构动力学耦合模拟”,第 68 届 Holm IEEE Holm 电接触会议。 2. M. Choi、Y.-K. Hong、H. Won、S. Li、S. Rahman、M. Nurunnabi、W. Lee、C.-D. Yeo,“磁体剩磁密度与矫顽力之比对辐条型永磁同步电机 (PMSM) 性能的影响”,第 11 届国际电力电子会议 - ECCE 亚洲 (ICPE 2023-ECCE Asia)。 3. C.-L. Kim、H.-J. Kim、H.-J. Kim、C.-D. Yeo、K.-H. Chung、I.-H. Sung,“摩擦学研发趋势回顾:未来挑战和问题的前景”,2019 年韩国摩擦学会会议,136-137 (2019)。4. H. Chang、J. Song、C.-D. Yeo、J. Kim,“探索影响运动服面料感知质量的因素”,国际纺织与服装协会会议录,新墨西哥州圣达菲。5. SA Lee 和 C.-D. Yeo a),“头盘界面的热机械接触和微磨损”,ASME/STLE 国际联合摩擦学会议 2011,317-319 (2011)。6. C.-D. Yeo 和 AA Polycarpou,“弹性接触模型兼顾粗糙度和基体柔顺性及其在图案化介质中的应用”,ASME/STLE 国际联合摩擦学大会 2007,1121-1122(2007 年)。 7. C.-D. Yeo、D.-E. Kim 和 J. Yoon,“内燃机凸轮/挺杆系统的扭矩测量和摩擦学特性”,韩国摩擦学会大会 1997,25,19-24(1997 年)。 8. C.-D. Yeo、D.-E. Kim 和 J. Yoon,“气门机构挺杆的磨合行为和磨损特性”,韩国机械工程师学会(KSME)大会 1997,803-808(1997 年)。
在过去的几十年中,糖尿病性肾病(DN)的全球患病率已大大增加,主要是由于2型糖尿病患病率的增加而驱动。糖尿病患者的DN发病率为35-40%(1,2),糖尿病和DN代表终结阶段肾脏疾病(ESRD)的主要原因(3)。DN的早期症状并不容易检测,但是总蛋白尿可以确定有进展到ESRD的风险的患者(4)。许多患者最终需要维持透析或肾脏移植,导致临床和经济负担很大(5)。糖尿病性视网膜病(DR)和DN是糖尿病的主要微血管并发症。DR和DN都有阴险的发作,并且逐渐发展为不可逆转的损害。糖尿病患者的DR发生率为34.6%,增殖性糖尿病性视网膜病(PDR)的发生率为7%。在全球范围内,PDR是新的失明病例的最常见原因(6)。早期诊断和治疗可以延迟DN和DR的发生和进展,并改善糖尿病患者的预后。当前用于诊断DN的黄金标准是肾脏病理;但是,该方法是侵入性的,它限制了其应用。可以使用非侵入性成像观察到视网膜血管。此程序可能会导致包括DN在内的糖尿病的其他微血管并发症的发展。因此,一些证据表明,视网膜血管分形维度是糖尿病微血管病性的共享生物标志物,表明可能是常见的致病途径(7)。在1型糖尿病(T1DM)的患者中,视网膜血管直径与肾脏结构变化有关。特定于基线中央视网膜小动脉直径与肾小球病指数的变化相关,并且中央视网膜直径与中键基体积体积分数的变化相关(8)。无蛋白尿的T1DM的病理表现,包括肾小球基底膜(GBM)厚度和肾小球矩阵体积分数,随着DR的严重程度的增加而增加(9)。
摘要:利什曼病是由利什曼属的动基体寄生虫引起的一组被忽视的热带疾病。目前的化疗非常有限,对新型抗利什曼病药物的需求在国际上具有迫切的重要性。溴结构域是表观遗传读取结构域,已显示出对癌症治疗的良好治疗潜力,并且也可能成为治疗寄生虫病的有吸引力的靶点。在这里,我们研究了杜氏利什曼原虫溴结构域因子 5 (Ld BDF5) 作为抗利什曼病药物研发的靶点。Ld BDF5 在 N 端串联重复序列中包含一对溴结构域 (BD5.1 和 BD5.2)。我们纯化了杜氏利什曼原虫 BDF5 的重组溴结构域,并通过 X 射线晶体学确定了 BD5.2 的结构。使用组蛋白肽微阵列和荧光偏振分析,我们确定了 Ld BDF5 溴结构域与源自组蛋白 H2B 和 H4 的乙酰化肽的结合相互作用。在包括热位移分析、荧光偏振和 NMR 在内的正交生物物理分析中,我们表明 BDF5 溴结构域与人类溴结构域抑制剂 SGC − CBP30、溴孢菌素和 I-BRD9 结合;此外,SGC − CBP30 在细胞活力分析中表现出对利什曼原虫前鞭毛体的活性。这些发现证明了 BDF5 作为利什曼原虫的潜在药物靶点的潜力,并为未来开发针对这种表观遗传读取蛋白的优化抗利什曼原虫化合物奠定了基础。关键词:利什曼原虫、溴结构域、表观遗传学、药物发现、结构生物学
定向能量沉积 Geovana Eloizi Ribeiro Vincent Edward Wong Diaz Willian Roberto Valicelli Sanitá Alessandro Rodrigues 圣保罗大学圣卡洛斯工程学院机械工程系 电子邮件: vwong.ufs@gmail.com 、geovana_rib@usp.br 、willian.r.sanita@usp.br 、roger@sc.usp.br、Reginaldo Coelho Teixeira 圣保罗大学圣卡洛斯工程学院生产工程系 rtcoelho@sc.usp.br 摘要:金属增材制造已经成为一种技术,能够以“近净成形”形式生产复杂金属零件、进行修复和使用梯度材料创建零件,从而能够制造高附加值和低产量的零件。激光和粉末定向能量沉积 (LP-DED) 是增材制造工艺的一种,通过集中的热能使金属粉末熔化。这些应用对航空航天、汽车和医疗等不同领域都具有吸引力。在医疗领域,其应用主要集中在制造植入物、假肢、仪器和医疗器械。在假肢和植入物的制造中,Ti6Al4V 钛合金因其高机械强度、高耐腐蚀性、低密度以及良好的生物相容性而脱颖而出。文献挑战之一反映了 LP-DED 工艺赋予打印部件的粗糙度,这会影响假肢和植入物的骨整合,与其恢复时间和成功率有关。本文评估了使用两种粉末从 LP-DED 工艺获得的 Ti6Al4V 部件的粗糙度。第一种是通过气体雾化生产的,第二种是通过先进的等离子雾化生产的。随后,在纯 Ti 基体上用 LP-DED 制造了八个样品。激光功率是另一个输入变量,范围从 300 W 到 345,增量为 15W。用去离子水和丙酮用超声波振动清洁样品。然后,我们使用共聚焦显微镜评估样品的粗糙度。所用粉末的粉末形貌表明,气雾化产生的粉末呈现非高斯分布,有薄片、孔隙和卫星。与气雾化粉末相比,先进等离子雾化产生的粉末呈现高斯分布,孔隙数量更少,卫星和薄片的存在也更少。关键词:定向能量沉积;粗糙度;Ti6Al4V,增材制造。1. 介绍
交通参与:Lorazepam缩写:BAC =血液酒精浓度Druid =在药物,酒精和药物的影响下驾驶。(欧洲补贴的研究项目,涉及药物,酒精和药物对道路安全的影响)。gaba = gamma-氨基体酸BZ =苯二氮卓类=横向位置的标准偏差。sds =速度的stadaard偏差。ilc = inappPreatee线条交叉文献搜索日期:29-02-2024。结论KNMP医学信息中心已将Lorazepam分类为III类,除其他外,包括安慰剂控制的研究,德鲁伊和药理学。这与血液酒精浓度超过0.8 Promille的流量风险相当。由于没有关于持续效应持续时间的可用研究,因此已决定将德鲁伊的建议作为基础。建议不要在上次政府后72小时内参加交通。,然后当驾驶危险的副作用消失时。对劳拉西m几个小时后几个小时,对劳拉西m急性影响的几项研究对驾驶技能产生了显着的负面影响。van laar M等人的研究(2001)看来,在7天连接使用3毫克Lorazepam后,对驾驶技能的显着影响是可以衡量的,这与BAC> 1.0 Promille的影响相当。在O´hanlon JF等人的研究中也是如此安慰剂。口服后,CMAX大约是在(1995)使用八天后,相对于根据对驾驶技能的影响,使用了超过八天的时间,尚未进行研究。供随后的/日常使用,建议不要参与流量。考虑和其他注释动力学/动力学苯甲酰二氮卓基因分子通过与GABA受体上的特定位置结合,即BZ(benodiaiazepine) - reptor- repertor。与该受体的结合导致打开氯化物通道,氯化物的流入会导致膜的超极化(从而降低令人兴奋性)。所有苯二氮卓大龙的人都有催眠,抗焦虑,抗惊厥和肌肉放松的特性,只有手术发生的速度和每种药物的作用持续时间都不同。在1-1.5小时后肌肉内给药后达到2小时。消除半衰期时间为12-16小时。Lorazepam被归类为苯二氮卓氮杂的人,其寿命很长(1)。
ganoderic酸(气体)是Ganoderma lucidum的主要功能成分。这项研究旨在繁殖新的G. lucidum菌株,其含量增加了单个气体。通过原生质体的形成和再生,成功地从二卡罗菌C. lucidum cgmcc 5.0026中成功分离出了两种与兼容的单子菌株G. 260125和G. 260124。分别在单障G. 260124和G. 260125菌株中分别表达了玻璃体血红蛋白基因(VGB)和小矛烯合酶基因(SQS)。交配导致形成了新的杂种二卡罗菌G. lucidum菌株SQS-VGB。配偶SQS-VGB菌株的基体中Ganoderic酸(GA)-T,GA-ME和GA-P的最大含量分别为23.1、15.3和39.8μg/g/g干重(DW),比大于lucidum 5.0026中的 与G. lucidum 5.0026中的SQS-VGB菌株相比,在配偶SQS-VGB菌株的基因体中,小孢子和1.75倍的含量分别增加了2.35倍和1.75倍。 此外,在配合的SQS-VGB菌株中,SQS和羊毛醇合酶基因(LS)的最大表达水平分别增加了3.23-和2.13倍。 总而言之,我们通过整合基因工程和一单声道交叉,开发了一种新的G. lucidum菌株,具有较高的基因中的单个气体含量。与G. lucidum 5.0026中的SQS-VGB菌株相比,在配偶SQS-VGB菌株的基因体中,小孢子和1.75倍的含量分别增加了2.35倍和1.75倍。 此外,在配合的SQS-VGB菌株中,SQS和羊毛醇合酶基因(LS)的最大表达水平分别增加了3.23-和2.13倍。 总而言之,我们通过整合基因工程和一单声道交叉,开发了一种新的G. lucidum菌株,具有较高的基因中的单个气体含量。与G. lucidum 5.0026中的SQS-VGB菌株相比,在配偶SQS-VGB菌株的基因体中,小孢子和1.75倍的含量分别增加了2.35倍和1.75倍。此外,在配合的SQS-VGB菌株中,SQS和羊毛醇合酶基因(LS)的最大表达水平分别增加了3.23-和2.13倍。总而言之,我们通过整合基因工程和一单声道交叉,开发了一种新的G. lucidum菌株,具有较高的基因中的单个气体含量。
[4] Ding, H., Liang, X., Xu, J., Tang, Z., Li, Z., Liang, R.* , & Sun, G.* (2021). 用于柔性传感器的超强拉伸、高强度和快速自恢复的水解水凝胶。ACS Applied Materials & Interfaces,13(19),22774-22784。[5] Tang, Z., Hu, X., Ding, H., Li, Z., Liang, R.* , & Sun, G.* (2021). 绒毛状聚(丙烯酸)基水凝胶吸附剂,具有快速高效的亚甲蓝去除能力。胶体与界面科学杂志,594,54-63。[6] Huo, P., Ding, H., Tang, Z., Liang, X., Xu, J., Wang, M., Liang, R.* , & Sun, G.* (2022)。具有高韧性和快速自恢复的半互穿网络导电丝素蛋白水凝胶,可用于应变传感器。国际生物大分子杂志。[7] 王梅、梁琳、刘倩、梁晓燕、郭红、李哲、梁荣* 和孙光杰 (2022)。磷酸氢二钾对磷酸镁钾水泥性能的影响。建筑与建筑材料,320,126283。[8] 郭红、唐哲、刘倩、徐建、王梅、梁荣* 和孙光杰 (2021)。超吸水绒毛状纳米复合水凝胶实现超稳定防冲刷水泥浆。建筑与建筑材料,301124035 [9] 刘倩、陆哲、胡晓、陈斌、李哲、梁荣*、孙光杰* (2021)。水泥基体原位聚合制备机械强度高的聚合物-水泥复合材料。建筑工程杂志,103048。 [10] 郭华、徐建、唐哲、刘倩、王明、梁荣*、孙光杰* (2022)。超吸水聚合物基防冲刷外加剂对海水混合水泥浆体性能的影响。材料与结构,55(2),1-14。 [11] 王明、刘倩、梁荣、徐建、李哲、梁荣*、孙光杰 (2022)。偏高岭土对高水固比磷酸镁钾水泥性能的影响。土木工程材料学报,34(9),04022227。
摘要进行了本研究,以记录Macrofungi Mt.Arayat保护景观(MAPL),(菲律宾Pampanga)。目的抽样从2023年7月至2023年12月每月从南峰和北峰收集地点的基线(100-750 MASL)进行。记录了224个大芬基,属于两个门,四个类别,12个命令,36个家庭,53属和108种。在108种中,有70种在物种水平上鉴定出来。大多数有记录的分类群都属于基体基菌,其中琼脂类阶级记录的物种数量最多,其次是多植物。南峰值的大分子成分高70.37%,比北峰的百分比为52.78%。根据香农多样性指数(H)Margalef指数(R)(R)和偶数(E)在South Peass中分别以4.16(h)和15.49(R)分别对两个集合地点的分布进行了统计分析。在两个收集站点中的均匀度几乎都是统一的。Sorensen相似性指数为0.366,表明两个收集位点之间的共享物种中等水平。关于高程,在100-250 MASL(56.48%)处发现了最多的大型真菌组成,主要由草和树木组成。在501-750 MASL(25.93%)处发现了最低数量的大型真菌组成,主要由檐篷主导。在100-250 MASL中,大芬基的分布也更高,(h)= 4.066和(r)= 13.8。获得的三个高程几乎分布。共享物种的相似性在100-250 MASL与251-500 MASL之间相似,在100-250 MASL与750 MASL之间相对较低。大多数大型芬基被发现是不可用的,并且在死原木和树枝树干,竹子和腐烂的树桩上孤独地生长。气候因素(例如温度,湿度和降雨)以及人为的干扰影响了大芬的丰度和分布。在7月的雨季(51.85%)和12月的干燥月份(15.74%)中,该构图很高(51.85%)。在收集月份和三个不同的高度(100-250 MASL,251-500 MASL和501-750 MASL)中,通常在两个收集地点,在收集月份和三个不同的高程中通常发现了Ganoderma,Microporus,schizophyllum和Trametes的种类。被鉴定出22个大扇形,并被认为是菲律宾新记录的物种,在实验室中成功地组织了八个物种。在MAPL中观察到的这种高多样性与其森林生态系统的功能相关,这可能是有前途的大雄芬基的来源。因此,森林的保护和可持续性被认为是必要的。