现有的用于激光增材制造 (LAM) 的商用粉末是为需要后热处理 (PHT) 的传统制造方法而设计的。LAM 独特的循环热历史会在沉积过程中对材料进行内在热处理 (IHT),这为开发 LAM 定制新材料提供了机会。这项工作定制了一种新型 Fe-Ni-Ti-Al 马氏体时效钢,并借助机器学习利用 IHT 效应在 LAM 过程中原位形成大量沉淀物,而无需 PHT。钢中的快速沉淀动力学、定制的间歇沉积策略和 IHT 效应促进了 Ni 3 Ti 在高密度位错上的异质成核,从而在马氏体基体中原位沉淀。成品钢的抗拉强度达到 1538 MPa,均匀伸长率达到 8.1%,优于各种 LAM 加工的高强度钢。在当前主流的非原位 4D 打印中,3D 打印结构随时间的变化(即属性或功能变化)发生在部件形成之后。这项工作重点介绍了通过将随时间变化的沉淀硬化与 3D 几何成形同步集成而进行的原位 4D 打印,这显示出高能源效率和可持续性。这些发现为通过理解和利用 IHT-材料相互作用来开发 LAM 定制材料提供了见解。
摘要:激光熔化沉积 (LMD) 近来因生产近净形零件和修复磨损部件而受到工业领域的关注。然而,LMD 在熔池动力学和流体流动分析方面仍未得到探索。在本研究中,计算流体动力学 (CFD) 和分析模型已经开发出来。流体体积和离散元建模的概念用于计算流体动力学 (CFD) 模拟。此外,设计了一个简化的数学模型,用于单层沉积,其中激光束衰减比是 LMD 工艺固有的。这两个模型都通过 Ti6Al4V 合金在 Ti6Al4V 基体上的单道沉积实验结果进行了验证。实验和建模之间有密切的相关性,只有一些偏差。此外,还设计了一种跟踪熔体流动和相关力的机制。模拟显示,由于同轴添加粉末颗粒,LMD 仅涉及传导模式熔体流动。在激光束前方,熔池呈现顺时针旋涡,而在激光点位置后方,则呈现逆时针旋涡。打印过程中,一些部分熔化的颗粒试图进入熔池,导致熔体材料内发生飞溅。在层沉积后确定了熔化状态、糊状区域(固体+液体混合物)和凝固区域。这项研究深入了解了 LMD 打印背景下的熔体流动动力学。
elvysreis@yahoo.com.br 摘要 将碳纳米管 (CNT) 添加到胶凝基体中,更具体地说添加到混凝土中,可以提高其强度和耐久性。从这个角度来看,本文旨在回顾含碳纳米管混凝土 (CNT 混凝土) 的主要工程性能。为此,我们使用 ProKnow-C 方法查找过去五年中发表的最相关论文,并选择了 19 篇文章进行完整分析。收集的数据包括 CNT 的类型、含量和分散技术,以及 CNT 混凝土的类型和性能,即抗压强度、抗拉强度和抗弯强度、弹性模量、吸水率、孔隙率和渗透性、电导率和电阻率、碳化和氯离子渗透阻力、断裂能和韧性。这篇系统的文献综述表明,添加 CNT 通常会提高混凝土强度,但其对其他工程性能(如碳化和氯离子渗透阻力、蠕变和收缩)的影响仍需要进一步研究。 关键词:水泥基材料;碳纳米管;力学性能;耐久性。1. 引言混凝土是世界上消耗最多的建筑材料,也是污染最严重的材料,其生产约占全球二氧化碳排放量的 7% [1]。由于其多种使用方式,数以百万计的钢筋混凝土 (RC) 结构每天都面临着恶劣的天气条件、污染和其他化学侵蚀,这些侵蚀会渗透并损坏其钢筋。然而,修复这些损坏的成本可能很高,正如美国土木工程师学会 (ASCE) 年鉴中所述 [2]。从这个意义上说,一些 RC 结构不断出现一系列耐久性问题,主要与腐蚀、潮湿、氯离子侵蚀、硫酸盐和碱金属有关。
OMICS技术和人工智能(AI)方法的抽象进步正在推动我们在肝病学中朝着个性化诊断,预后和治疗策略方面的进步。本评论提供了全面的概述,以了解用于分析肝脏疾病中OMICS数据的当前AI方法的景观。我们概述了各种肝脏疾病中不同OMICS的流行率,并分类了整个研究中使用的AI方法。具体来说,我们强调了转录组和基因组分析的优势以及对其他水平的相对稀疏探索,例如蛋白质组和甲基体,这代表了新见解的未开发潜力。公开可用的数据库计划,例如癌症基因组图集和国际癌症基因组联盟,为诊断和治疗肝细胞癌的进步铺平了道路。但是,大型OMICS数据集的相同可用性仍然有限其他肝病。此外,使用复杂的AI方法来处理多组学数据集的复杂性需要大量数据来训练和验证模型,并面临通过临床实用程序实现偏见的挑战。讨论了解决数据缺乏并利用机会的策略。鉴于慢性肝脏疾病的全球负担重大,必须建立多中心合作,以生成大规模的OMICS数据,以进行早期疾病识别和干预。探索高级AI方法也是最大程度地提高这些数据集潜力并改善早期检测和个性化治疗策略的必要条件。
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
DNA甲基化改变已经与癌症有关,它们在治疗和诊断方面的有用性鼓励了对人类表观基因组的研究。几项生物标志物研究的重点是单独识别癌症类型,但共同的癌症和多层标记仍未得到解决。我们使用癌症基因组图集(TCGA)研究了14种不同癌症类型的基因组 - 宽甲基化蛋白酶,并开发了一种三步计算方法来选择候选生物标志物CpG位点。总共发现了1991年的泛伴侣,在75至1803年之间,发现了癌症特定于差异化的甲基化的CpG位点。在如此大的规模上也是第一次发现了差异化甲基化的块和区域。通过三步计算方法,从这些位点确定了四个泛伴奏CpG标记的组合,并经过外部验证(AUC = 0.90),在跨肿瘤阶段保持可比的性能。此外,确定了20种肿瘤特异性CPG标记物并组成了最终类型的特殊预测模型,这些模型可以准确地区分肿瘤类型(AUC = 0.87 - 0.99)。我们的研究强调了甲基体作为癌症生物标志物的丰富来源的力量,而我们确定的签名为在更广泛的基因组量表上使用癌症机制的新资源提供了新的资源,并在新的微型侵入性癌症检测分析的背景下具有强大的适用性。
摘要 要达到设计性能所需的材料需要能够提供金属、陶瓷和金属陶瓷化学成分的配方和加工方法,这些成分必须在源头进行精细调整,并能耐受下游的热机械调整。研究人员不断利用计算热力学模型和改进的热机械处理技术开发结构钢和金属陶瓷,目前正在评估基于 8%–16% wt.% Cr 的氧化物弥散强化钢 (ODS) 还原活化铁素体-马氏体钢 (RAFM)。SiC f 和 CuCrZr 的组合作为含有活性冷却剂的金属基复合材料将被视为一个重大机遇,此外,由 SiC 纤维增强 SiC 基体且能够与金属结构连接的复合陶瓷材料在先进热交换器的开发中具有巨大潜力。继续讨论先进制造的主题,使用粉末冶金热等静压和放电等离子烧结等固态加工技术来生产金属、陶瓷和金属陶瓷的近净成形产品是关键的制造研究主题。增材制造 (AM) 用于生产金属和陶瓷部件现在正成为一种可行的制造途径,通过 AM 和减材加工的结合,可以生产出其他任何工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高同质性和提供模块化,现在可以使用双管齐下的解决方案来提高能力和完整性,同时为设计师提供更大的自由度。
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。
锥虫原生动物参与一些奇怪的生物化学过程,最奇怪的莫过于 RNA 编辑。在这些生物(例如短膜虫、利什曼原虫和锥虫)的线粒体中,蛋白质编码转录本通过位点特异性删除某些基因组编码的尿苷残基并添加其他非编码的 U 而发生改变(参考文献 1)。该过程重新定制初始初级转录本(“预编辑 RNA”),以使最终产品指定完整的功能性蛋白质。除了对预编辑 RNA 的特定区域进行局部编辑(5'-编辑)之外,锥虫还进行一种引人注目的“泛编辑”,在某些情况下,这种编辑可占信使 RNA 成熟序列的 50% 或更多 1 。在本期第 345 页 2 ,Maslov 等人提出的证据表明,与人们的预期相反,泛编辑是锥虫谱系中的古老特性,而非最近获得的特性。RNA编辑系统的进化(它们如何出现以及为何持续存在)是进化生物学中的一个挑战性问题 3 。迄今为止,U添加/删除编辑仅在线粒体中发现,并且仅存在于动基体目(包括锥虫、博多虫和相关的隐虫)中。然而,其他类型的线粒体 mRNA 编辑也已被记录 4 ,以及线粒体转移 RNA S- 7 和核糖体 RNA 8 的编辑。这些系统的多样性和机制独特性,再加上它们的高度受限发生,强烈表明它们中的大多数(如果不是全部)都是最近在进化中获得的特性 3 。