马尼戈特上校出生于南卡罗来纳州查尔斯顿,他的军事生涯始于美国陆军化学兵团的少尉,驻扎在阿拉巴马州麦克莱伦堡。在 27 年的职业生涯中,他曾在佐治亚州、北卡罗来纳州、密苏里州、华盛顿州、马里兰州、弗吉尼亚州和德克萨斯州等州执行过各种任务。他的海外和作战经验包括伊拉克自由行动;以及为埃及、科威特、巴林、日本和韩国的训练演习提供支持。他曾在第 3 步兵师第 2 旅第 1-64 装甲营、第 82 空降师第 504 伞兵团、刘易斯-麦克乔德联合基地第一军总部担任重要参谋。第 82 CBRN 营、第 3 CBRN 旅和第 22 CBRN 营 (TE)、第 48 CBRN 旅、第 20 CBRNE 司令部。
为何选择 POET?• 陆军认识到其有责任处理可能因历史陆军活动而释放到环境中的污染物和/或污染物。• 陆军与科学家和工程师合作,仔细而有条不紊地确保将要安装的任何过滤系统都是适合从饮用水中过滤掉 PFAS 的系统。• 为迎接 EPA 预计在 2023 年底发布的最终标准,国防部正在采取行动,准备将 EPA 的最终监管标准纳入其当前的清理流程,例如审查其现有数据并在必要时进行额外采样。• 陆军继续与房主合作,以便他们了解这些系统的外观和运作方式。• PFAS 水平超过 70 ppt 的住宅将继续获得瓶装水,直到安装和测试过滤系统。
他就读于尼耶里小学,是 8-4-4 体制下的先锋。年少时的寄宿学校经历培养了他自力更生和专注的意识。Eng. Githinji 是班上三名有资格进入著名的联盟高中的学生之一。对他来说,联盟高中是一种范式转变,他称之为“伟大的均衡器”。这所学校的学生来自遥远的北部曼德拉和洛基乔吉,甚至来自沿海地区和大湖地区。联盟高中的座右铭“坚强服务”成为他服务他人的基石。1989 年,他完成高中学业并考入埃格顿大学攻读农业工程学士学位。尽管表现出色,Eng. Githinji 仍对自己没有获得第一志愿即在内罗毕大学攻读电气工程学位而感到失望。不过,他曾在埃格顿大学短暂任职,并再次结下了终生友谊,这些友谊在他以后的职业生涯中发挥了重要作用,并促使他 30 年后回到肯尼亚。Eng. Githinji 于 1990 年离开埃格顿大学,出国深造。他得到了在加拿大继续深造的机会,在温莎大学阿桑普申工程学院学习电气与电子工程。安大略省温莎市是一座大学城,是一个多元化的堡垒,也是世界最大汽车制造商通用汽车 (GM)、福特和克莱斯勒的所在地。这个国际化和进步的生态系统结合并促进了学术和商业关系。从大一开始,Eng. Githinji 就参与了通用汽车温莎动力传动分部的合作培训。Eng. Githinji 将这种学术和商业合作模式融入其中,并在多年后形成了 STL 劳动力发展的运营战略。Eng. Githinji 于 1995 年毕业,获得电气与电子工程学士学位(荣誉学位)。
单相电解质的低离子电导率已不能满足600 ˚C以下的使用要求,制备高离子电导率的复合电解质成为发展方向。本文综述了掺杂CeO 2 无机盐(碳酸盐、硫酸盐)、掺杂CeO 2 金属氧化物以及掺杂CeO 2 钙钛矿复合电解质,分析了第二相对CeO 2 基电解质性能的影响。由于独特的H + /O 2−共导电性,无机盐的加入可以提高掺杂CeO 2 无机盐复合电解质的电导率。掺杂CeO 2 钙钛矿体系总电导率的提高可能是由于晶界电导率提高引起的。在掺杂CeO 2 金属氧化物体系中加入氧化物可以降低烧结温度,提高晶界电导率。以期为制备性能优异的二氧化铈复合电解质提供理论指导。
Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
不工作时,马特喜欢与家人共度时光,支持他最喜欢的球队,包括犹他爵士队、杨百翰大学美洲狮队、科罗拉多洛矶队和旧金山 49 人队,斯塔西则在他身边大声欢呼。马特和斯塔西喜欢一起度过时光,经常一起旅行,游览新地方,寻找新餐馆并在那里用餐,逗彼此开心。马特喜欢阅读历史,尤其是那些对世界产生积极影响的领导人,他试图效仿他们。他喜欢划船、四轮驱动,也许最重要的是,他喜欢去家庭小屋放松,忘却一切,享受长时间的午睡,这有助于他恢复精力。他经常与一生挚爱分享这些活动,这让马特和斯塔西有机会留下终生难忘的回忆。
陆军还在使用 AFFF 吗?陆军禁止在其设施上使用 AFFF 进行维护、测试和培训,并且仅将 AFFF 用于应急响应。自 2017 年以来,陆军将任何含有 PFAS 的 AFFF 泄漏视为泄漏,并要求立即应对以限制对环境的影响。2023 年 1 月,军方批准了一种适用于扑灭航空燃料火灾的新型无 PFAS 灭火泡沫,并于 2023 年 9 月批准了第一种替代泡沫。陆军现在开始一项复杂的任务,即用无氟灭火配方替换其车辆、设施和设备中的所有 AFFF。国会禁止在 2024 年 10 月 1 日之后在军事设施上使用氟化水成膜泡沫。该禁令不适用于仅在远洋船舶上使用的灭火泡沫。更多信息请访问国防部 PFAS 网站:https://www.acq.osd.mil/eie/eer/ecc/pfas/index.html。
在演讲中,CitySpaces 将简要介绍省级住房需求报告要求,然后概述 HNR 方法和基蒂马特区强制性计算的结果。他们还将提供额外分析的结果,以便更好地了解基蒂马特按住房保有权和类型、家庭收入、家庭规模和所需卧室估计的住房需求。还将简要讨论后续步骤,包括一项新的立法要求,即在 2025 年 12 月 31 日之前更新官方社区计划,以容纳临时住房需求报告中确定的住房单元数量。这一过程预计将于 2025 年初春开始。