AU:请确认所有标题级别均正确显示:上皮-间质转化 (EMT) 是一种细胞可塑性的生物现象,最初在胚胎发育过程中报道,其在癌症进展和转移中的重要性日益受到重视。尽管过去 20 年,我们在理解 EMT 在癌症中的分子机制和功能重要性方面取得了巨大进展,但 EMT 周围仍有几个未解之谜。在这个未解之谜中,我们重点关注转移中的各种 EMT 类型、合作和集体 EMT 行为、EMT 的时空特征以及针对 EMT 的治疗策略。我们还重点介绍了新的技术进步,这些进步将有助于阐明转移中 EMT 的未解之谜。
质体,特异性细胞器分化为几种类型,包括在细胞分化和响应各种胁迫的过程中,包括光合作用的表现性叶绿体和淀粉蓄积的淀粉样品。这些特定类型的质体与名为Proplastids的原始类型的质体不同,这些质体通常在分生组织中在种子细胞或干细胞中发展(图1)。获得高塑料的质体将是植物在世界各地蓬勃发展和多样化的关键事件。然而,质体可塑性的进化史和分子机制在很大程度上尚不清楚。在这项研究中,我们旨在了解使塑料能够进行广泛分化的中心机制,并揭示植物如何调节开发过程中的机制和响应不断变化的环境。
硅基涂层体系中应引起重视的基本研究问题是:(1)研究添加剂(如硼、锗)、水分和氧压对氧化物粘附性和粘度的影响,以便为有效减少和控制密封剂和水垢开裂提供必要的理解和数据;(2)为开发具有最佳热膨胀、应变耐受性和可塑性的双层和玻璃涂层进行裂纹管理,进行必要的分析和建模;(3)研究真实的功能梯度涂层,利用涂层的梯度和/或一系列层来控制裂纹的萌生,特别是裂纹的扩展;(4)在可能的情况下,包括测量、分析和实际建模施加应力对涂层系统的影响;(5)在二氧化硅作为离子导体的较高温度下,电解抑制通过二氧化硅水垢的传输。
经颅磁刺激(TMS)是一种使用磁场来刺激大脑皮层中神经元的无创技术。虽然以前打算在医疗领域使用电力,但TMS的历史可以追溯到19世纪法拉第的电磁诱导的发现。但是,直到1980年代,安东尼·巴克(Anthony Barker)在谢菲尔德大学开发了第一个TMS设备。tms通过靠在头皮上的线圈来工作,从而产生磁场。该磁场可以通过头骨并刺激皮质神经元。磁场的强度和频率可以调整为靶向大脑的特定区域,并产生兴奋性和抑制作用。TM的原理基于神经可塑性的概念,它是指大脑对新经验和刺激的改变和适应的能力。通过用TMS刺激大脑中的神经元,可能会导致神经元活动和连通性的变化,进而导致认知和情绪变化。
这种可塑性是指大脑物理结构的变化。它涉及建立新的神经联系和未使用的神经联系。结构可塑性对于学习和记忆至关重要,因为它允许大脑形成和增强突触连接。功能可塑性涉及大脑从受损区域重新分布功能的能力。当特定的大脑区域因受伤或疾病而受到损害时,其他区域可以补偿并承担其功能。在神经塑性的核心处是突触可塑性,涉及加强或削弱神经元之间的连接(突触)。突触可塑性的两种基本类型是长期增强(LTP)和长期抑郁(LTD),这是学习和记忆过程的基础。大脑产生新神经元的能力,称为神经发生,主要发生在海马中,在学习和记忆中起着至关重要的作用[3]。
肿瘤免疫微环境在结直肠癌的转移中起着至关重要的作用。作为最重要的免疫细胞之一,巨噬细胞充当吞噬细胞,巡逻组织的周围环境,并去除入侵的病原体和细胞碎片以维持组织稳态。显着地,巨噬细胞具有高可塑性的特征,可以根据不同的功能可以分类为不同的亚型,这些功能可以经历由不同类型的分子和信号通路引起的相互表型转换。巨噬细胞通过改变肿瘤免疫微环境来调节大肠癌的发育和转移潜力。在肿瘤组织中,肿瘤相关的巨噬细胞通常在肿瘤免疫微环境中起肿瘤促进作用,并且它们的预后不良有关。本文回顾了大肠癌转移过程中巨噬细胞的机制和刺激因素,并打算表明靶向巨噬细胞可能是大肠癌治疗中的有希望的策略。
使用先进的非侵入性脑刺激研究健康和病理脑的神经可塑性 主席:Alejandra Sel Domenica Veniero(诺丁汉大学):经颅磁刺激和脑电图研究局部兴奋性和长距离连接 Paolo Di Luzio(意大利基耶蒂-佩斯卡拉 G. d'Annunzio 大学):基于可塑性的 TMS 协议作为研究感知决策网络的工具 Estelle Emeline Raffin(瑞士日内瓦联邦理工学院 (EPFL)):调节区域间连接以探测和增强中风患者的残余视觉功能。Alejandra Sel(埃塞克斯大学):操纵运动控制网络中的皮质-皮质可塑性可增加年轻人和老年人的区域间振荡通信。研讨会 2
抑郁症是一种复杂的异质性疾病。[1]已经描述了许多病理机制用于抑郁。大脑中神经递质5-羟色胺水平的降低是抑郁症的5-羟色胺假设的基础。[2]神经性蛋白假说涉及神经塑性的破坏,这是神经元生长和适应性的有趣的典型机制,涉及神经营养因子在不同的发育阶段以及在神经系统中和周围不同位置具有多个功能的神经营养因子。[3]此外,抑郁被认为是低级慢性神经炎症。通过血脑棒的炎症介体与大脑的介体相互作用。因此,心理肌免疫轴的损害和细胞因子水平改变构成了抑郁症的炎症基础。[4]这些介体是不知道抑郁症的原因还是抑郁症的作用。
在相关期限内存储或访问,这是学习的关键要求。使用由脂质,水和十六进制组成的液滴界面双层(DIB),以及具有重复正弦曲线电流电压循环的电刺激训练方案,我们表明表现出具有长期塑性性的长期塑性的DIBS与长期的poctipiriip(Ltp)相关。与LTP相关的物理变化的时间尺度在分钟和小时之间范围范围范围,并且比以前的STP研究更长,在该研究中,仅几秒钟后存储的能量消散。STP行为是与双层区域和厚度可逆变化相关的双层几何形状变化的结果。另一方面,LTP是分子和结构性变化的ZwitterionInic脂质头组和脂质双层的介电性能,这是由于双层界面处越来越不对称的电荷分布而导致的。
表观遗传学通过调节基因表达而不改变DNA序列在衰老和寿命中起着至关重要的作用。最近的研究表明,表观遗传修饰,例如DNA甲基化,组蛋白修饰和非编码RNA相互作用,会导致衰老过程,并且可能受到外部因素的影响。生活方式干预措施,包括饮食,体育锻炼,压力管理和睡眠优化,已通过调节表观遗传标记来逆转生物年龄的结果。本文探讨了表观遗传老化的机制,环境和生活方式因素的影响以及利用表观遗传可塑性的策略来实现健康和寿命。了解这些机制为开发有针对性的干预措施促进健康衰老并延长寿命铺平了道路。