感测电路板和环境温度 温度传感器 IC(如 MAX6610/MAX6611)可感测其自身芯片温度,必须安装在要测量温度的物体上或附近。由于封装的金属引线和 IC 芯片之间有良好的热路径,因此 MAX6610/MAX6611 可以准确测量其焊接的电路板的温度。如果传感器用于测量电路板上发热元件的温度,则应将其安装在尽可能靠近该元件的位置,并应尽可能与该元件共享电源和接地走线(如果它们没有噪声)。这样可以最大限度地增加从元件到传感器的热量传递。塑料封装和芯片之间的热路径不如通过引线的路径好,因此 MAX6610/MAX6611 与所有塑料封装的温度传感器一样,对周围空气温度的敏感度低于对引线温度的敏感度。如果电路板设计为跟踪环境温度,它们可以成功用于感测环境温度。与任何 IC 一样,接线和电路必须保持绝缘和干燥,以避免泄漏和腐蚀,特别是如果部件在可能发生冷凝的低温下工作。
特性 512 位 EEPROM,分为 16 个 32 位字 32 位唯一标识符 (UID) 32 位密码读写保护 符合 ISO 11784 / 11785 标准 锁定功能将 EEPROM 字转换为只读 两种数据编码:曼彻斯特和双相 多用途数据速率:8、16、32、40 和 64 RF 时钟 读者对话优先功能 与 EM4469/EM4569 通信协议兼容 100 至 150 kHz 频率范围 片上整流器和电压限制器 无需外部电源缓冲电容 -40°C 至 +85 C 温度范围 极低功耗 加大凸块(200 m x 400 m) 用于直接连接线圈 (EM4305) EM4205:2 个谐振电容器版本 210pF 或 250pF,可通过掩模选项选择。谐振电容器可在工厂级微调,以提供 3% 的公差精度。 EM4305:3 个谐振电容器版本 210pF、250pF 或 330pF,可通过掩模选项选择 采用极薄小外形塑料封装;2 个端子;主体 1.1 * 1.4 * 0.46 毫米 应用 符合 ISO FDX-B 的动物识别 赛鸽标准 废物管理标准 (BDE) 门禁控制 工业
从历史上看,卫星项目一直使用航天级、密封、QML-V 合格组件来提高可靠性和抗辐射能力。随着用于新商业和政府项目的星座和低地球轨道卫星发射的持续增长,对能够满足严格预算的小型组件的需求也日益增长。因此,出于各种原因,人们对在太空中使用塑料封装微电路 (PEM) 的兴趣越来越大。PEM 变得更具吸引力,因为前沿产品没有航天合格产品,而且 PEM 通常比航天合格产品中使用的陶瓷封装占用空间更小、重量更轻。人们已经认识到使用商用现货 (COTS) 产品存在质量和可靠性风险,一些太空项目一直在研究使用具有更严格资格要求的汽车级 AEC-Q100 产品。但是,Q100 部件中的额外资格步骤并不能满足太空应用的所有要求,即使对于那些要求较低的太空应用也是如此。例如,预计使用寿命为三年的商业低地球轨道 (LEO) 应用仍必须满足许多 PEM 产品无法达到的辐射目标。卫星项目面临的最大挑战之一是找到并测试那些满足辐射目标的产品。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。
适用于高可靠性应用的高压 GaN HEMT 现提供 15 A 和 30 A 低电流版本 加利福尼亚州米尔皮塔斯 – 2021 年 1 月 6 日 – Teledyne e2v HiRel 正在为其基于 GaN Systems 技术的业界领先的 650 伏高功率产品系列添加两款新型加固型 GaN 功率 HEMT(高电子迁移率晶体管)。两款新型高功率 HEMT TDG650E30B 和 TDG650E15B 分别提供 30 安和 15 安的低电流性能,而去年推出的原始 650 V TDG650E60 可提供 60 A 的电流。这些 650 V GaN HEMT 是市场上可用于要求高可靠性的军事、航空电子和太空应用的最高电压 GaN 功率器件。它们非常适合电源、电机控制和半桥拓扑等应用。它们采用底部冷却配置,具有超低 FOM Island Technology® 芯片、低电感 GaNPX® 封装、>100 MHz 的超高频开关、快速且可控的下降和上升时间、反向电流能力等。Teledyne e2v HiRel 业务开发副总裁 Mont Taylor 表示:“我们很高兴继续为太空等需要最高可靠性的应用推出 650 V 系列高功率 GaN HEMT。我们相信,这些新器件的较小尺寸封装将真正使客户受益于设计最高功率密度项目。”TDG650E15B 和 TDG650E30B 都是增强型硅基 GaN 功率晶体管,可实现大电流、高击穿电压和高开关频率,同时为高功率应用提供非常低的结到外壳热阻。氮化镓器件已经彻底改变了其他行业的电源转换,现在采用耐辐射的塑料封装,经过严格的可靠性和电气测试,以确保关键任务的成功。这些新型 GaN HEMT 的发布为客户提供了关键航空航天和国防电源应用所需的效率、尺寸和功率密度优势。对于所有产品线,Teledyne e2v HiRel 都会针对最高可靠性应用进行最严格的认证和测试。对于功率器件,此测试包括硫酸测试、高海拔模拟、动态老化、高达 175°C 环境温度的阶跃应力、9 伏栅极电压和全温度测试。与碳化硅 (SiC) 器件不同,这两种器件可以轻松并联实现,以增加负载电流或降低有效 RDSon。这两种新器件现在都可以订购和立即购买。