淋巴结外自然杀伤 (NK)/T 细胞淋巴瘤,鼻型 (ENKTCL) 是一种高度侵袭性的淋巴瘤,其中肿瘤抑制基因 PRDM1 经常丢失或失活。我们采用了两种不同的 CRISPR/Cas9 方法来生成 PRDM1 -/- 原代 NK 细胞,以研究该基因在 NK 细胞稳态中的作用。与野生型相比,PRDM1 -/- NK 细胞的克隆效率显著提高、增殖率更高、凋亡更少。基因表达谱显示,在 PRDM1 -/- NK 细胞中,与增殖、细胞周期、MYC、MYB 和 TCR/NK 信号相关的通路显著富集,但与正常细胞功能(包括细胞毒功能)相关的通路被下调,这表明 PRDM1 的缺失使 NK 细胞转向增殖和存活,而不是发挥其正常功能。我们还能够进一步修改 PRDM1 缺失的克隆,以引入 ENKTCL 中常见的肿瘤抑制基因(如 TP53、DDX3X 和 PTPN6)的杂合缺失。我们建立了体外模型来阐明 PRDM1 介导其对 NK 细胞的稳态控制的主要途径。这种方法可以应用于研究淋巴瘤发病机制中的其他相关遗传病变和致癌协同作用。
肿瘤细胞的能量代谢被认为是癌症的标志之一,因为它不同于正常细胞,主要包括有氧糖酵解、脂肪酸氧化和谷氨酰胺分解。大约一百年前,瓦尔堡观察到癌细胞即使在常氧条件下也喜欢有氧糖酵解,这有利于它们的高增殖率。驱动这一现象的关键酶是乳酸脱氢酶 (LDH),本综述描述了与这种酶相关的预后和治疗机会,重点关注治疗策略和预期寿命有限的肿瘤(即胰腺癌和胸腔癌)。胰腺癌组织中 LDH-A 的表达水平与临床病理特征相关:LDH-A 在胰腺癌发生过程中过表达,在更具侵袭性的肿瘤中表现出明显更高的表达。同样,LDH 水平是腺癌或鳞状细胞肺癌患者以及恶性胸膜间皮瘤患者预后不良的标志。此外,血清 LDH 水平可能在这些疾病的临床管理中发挥关键作用,因为它们与肿瘤负荷引起的组织损伤有关。最后,我们讨论了以 LDH 为治疗策略的有希望的结果,报告了最近的临床前和转化研究,支持将 LDH 抑制剂与当前/新型化疗药物联合使用,这些化疗药物可以协同靶向肿瘤中存在的含氧细胞。
与正常组织相比,癌细胞的增殖率更高,并且经常失去凋亡能力。此外,癌细胞可以脱离其原始组织,从而导致转移到身体的其他部位。在进行程序性细胞死亡时,可能会发生细胞编程紊乱。这种细胞编程异常的主要原因是表观遗传和基因改变,它们被称为致癌的两种独立机制。最近对数千种人类癌症进行全外显子组测序的结果意外地发现了许多控制表观基因组的基因失活突变。这些突变有可能扰乱 DNA 甲基化模式、组蛋白修饰和核小体定位,从而导致基因表达改变。因此,表观基因组的遗传改变会导致癌症,就像表观遗传过程会导致点突变并禁用 DNA 修复功能一样。表观遗传机制的变化可能导致基因突变,而表观遗传调节剂的基因突变可能导致表观基因组变化。表观基因组在基因控制机制的层次结构中发挥着重要作用,这表明突变可能会对与癌症表型相关的多种途径产生影响。这明确指出了这样一个事实:最近,基因的组织和控制方式被认为是人类致癌的一个相关因素。
摘要 在哺乳动物进化的过程中,大脑尺寸和皮质折叠反复增加和减少。识别与这些性状共同进化的遗传元素,其序列或功能特性可为进化和发育机制提供独特信息。TRNP1 是这种比较方法的一个很好的候选者,因为它控制着小鼠和雪貂神经祖细胞的增殖。在这里,我们研究了 TRNP1 的调控序列和编码序列对 30 多种哺乳动物大脑尺寸和皮质折叠的贡献。我们发现 TRNP1 蛋白质进化的速度 ( ω ) 与大脑尺寸显著相关,与皮质折叠的相关性略低,与身体尺寸的相关性小得多。这种大脑相关性比 95% 以上的随机对照蛋白更强。这种共同进化可能影响 TRNP1 活性,因为我们发现来自大脑较大和皮质折叠较多物种的 TRNP1 会诱导神经干细胞的更高增殖率。此外,我们在大规模并行报告基因测定中比较了 TRNP1 的假定顺式调控元件 (CRE) 的活性,并确定了一种可能与旧世界猴和猿类的皮质折叠共同进化的 CRE。我们的分析表明,增加 TRNP1 活性的编码和调控变化被积极地选择为脑容量和皮质折叠增加的原因或结果。它们还提供了一个示例,说明系统发育方法如何为生物机制提供信息,尤其是当与多个物种的分子表型相结合时。
摘要:神经内分泌肿瘤(NENS)是一组具有共同表型的恶性肿瘤,但预后有所不同,对当前治疗的反应有所不同。基于它们的形态特征和增殖速率,可以将NEN分为两个主要组,具有不同的临床行为和对治疗的反应:(i)良好的分化神经内分泌肿瘤(网络)或类癌(较低的增殖率),以及(ii)较差的小细胞或大细胞神经(II)(ii)(II) 速度)。对于某些NEN(例如胰腺肿瘤,高级肿瘤以及患有DNA损伤修复缺陷的肿瘤),化学疗法是主要的治疗方法。在不同的化学疗法剂中,顺铂和卡铂与依托泊苷结合使用,与网络相比,在治疗NEC方面表现出最大的功效。顺铂和卡铂的细胞毒性作用主要是由于它们与DNA的结合,这会干扰正常的DNA转录和/或复制。与此相一致的是,NEC通常在DNA修复中涉及的途径中具有突变(例如RB,MDM2,BRCA和PTEN),对基于铂的化学疗法具有很高的反应。识别影响NENS引发和进展的分子途径的突变对于预测对铂化学疗法的反应至关重要。本综述旨在强调可靶向的突变,这些突变可以作为对NENS基于铂的化学疗法的治疗反应的预测指标。
抽象的细胞外基质(ECM)蛋白在培养肌肉干细胞(MUSC)中起着至关重要的作用。但是,缺乏关于这些蛋白质中的每种如何影响MUSC与牲畜动物的扩散和分化的广泛研究。因此,我们研究了各种ECM涂层(胶原蛋白,纤连蛋白,明胶和层粘连蛋白)在猪MUSC的增殖,分化和成熟中的影响。从14天大的伯克希尔小猪中分离出来的猪猪肉,在ECM涂层的板上培养,经历了三天的增殖,然后进行了三天的分化。层粘连蛋白上的MUSC的增殖率高于其他粘连率(p <0.05)。在层粘连蛋白,胶原蛋白和纤连蛋白上,PAX7,MyF5和MYOD的mRNA表达水平没有显着差异(P> 0.05)。在分化期间,与其他ECMS相比,在层粘连蛋白上培养的MUSC表现出明显更高的分化速率(P <0.05)。同样,层粘连蛋白上的MUSC与成熟的肌肉纤维(例如MyH1和Myh4)相关的mRNA表达较高,分别与其他ECM涂层的MUSC相比,分别与肌肉纤维型IIX型IIX和肌肉纤维型IIB相关(P <0.05)。总而言之,我们对ECM的比较表明,层粘连蛋白显着增强了MUSC的增殖和分化,表现优于其他ECM。具体来说,在层粘连蛋白上培养的肌肉纤维表现出更成熟的表型。关键字细胞外基质,猪肌干细胞,层粘连蛋白,增殖,分化这些发现强调了层粘连蛋白在体外肌肉研究和培养肉类产生的潜力,突出了其在支持快速细胞增殖,更高的分化速率和成熟肌肉纤维的发展中的作用。
存在促进2型糖尿病(T2D)种群中结直肠癌(CRC)发展的分子联系的存在,得到了大量流行病学证据的支持。本综述总结了T2D的全身,代谢和激素失衡如何改变CRC细胞的代谢,信号传导和基因表达以及它们的相互分离,并概述了CRC分子亚型和动物模型的概述,以研究糖尿病 - CRC癌症的链接。代谢和生长因子检查点可确保生理细胞增殖率与有限的养分供应兼容。在糖尿病前期的高胰岛素血症和高肌血症,T2D中过量的循环葡萄糖和脂质过量克服了肿瘤发育的强大障碍。增加的养分可用性有利于代谢重编程,改变信号传导并通过增加活性氧和oncometebolites来产生突变和表观遗传修饰。糖尿病中的代谢和激素信号传导之间的相互控制。在T2D不平衡脂肪因子(瘦素/脂联素)的分泌比和功能上过量的脂肪组织,并破坏胰岛素/ IGF轴。瘦素/脂联素失衡被认为可以促进CRC癌细胞的增殖和侵袭,并导致炎症,这是CRC肿瘤发生的重要组成部分。T2D中胰岛素/IGF轴的破坏目标是系统性和CRC细胞代谢重编程,生存和增殖。未来的研究以阐明分子糖尿病 - CRC连接将有助于防止CRC并减少其在糖尿病人群中的发病率,并且必须指导治疗决定。
T 细胞疗法,例如嵌合抗原受体 (CAR) T 细胞和 T 细胞受体 (TCR) T 细胞,是一类日益增长的抗癌疗法。然而,扩展到新适应症和最后一线治疗之外需要设计细胞的动态群体行为。在这里,我们开发了从活细胞成像中分析 T 细胞细胞行为的工具,这是一种用于评估工程化 T 细胞的常见且廉价的实验装置。我们首先开发了一种基于人机深度学习的最先进的分割和跟踪管道 Caliban。然后,我们构建了 Occident 管道来收集表征修饰的 T 细胞和抗原呈递肿瘤细胞共培养中的细胞群体、形态、运动和相互作用的表型目录。我们使用 Caliban 和 Occident 来探究当将 RASA2 和 CUL5 的有益敲除引入 TCR T 细胞时,T 细胞和癌细胞之间的相互作用有何不同。我们应用时空模型来量化与癌细胞相互作用后的 T 细胞募集和增殖。我们发现,与安全港敲除对照相比,RASA2 敲除 T 细胞与癌细胞的相互作用时间更长,从而导致更高的 T 细胞活化和杀伤效力,而 CUL5 敲除 T 细胞的增殖率更高,从而导致更多的 T 细胞可供狩猎。Caliban 的分割和追踪以及 Occident 的表型量化相结合,使细胞行为分析能够更好地设计 T 细胞疗法,从而改善癌症治疗。
已确定必需氨基酸 (EAA) 通过快速改变翻译因子的磷酸化状态来调节乳腺上皮细胞的蛋白质合成。然而,对 EAA 供应的长期转录反应研究得很少。选定了八种转录因子作为 EAA 通过氨基酸反应 (ATF4、ATF6)、丝裂原活化蛋白激酶 (JUN、FOS、EGR1) 和雷帕霉素复合物 1 的机制靶点 (MYC、HIF1A、SREBF1) 影响乳腺细胞功能的候选介质。目的是确定在施加 EAA 缺乏 24 小时后,这些候选基因的表达是否以及何时在牛乳腺上皮细胞原代培养物中受到影响,并评估 EAA 缺乏对蛋白质合成、内质网大小、细胞增殖和脂肪形成的影响。将分化细胞在代表所有氨基酸的正常生理浓度 (CTL)、低赖氨酸 (LK) 或低蛋氨酸 (LM) 的 3 种处理培养基中的 1 种中培养 24、40、48 或 60 小时。LK 和 LM 均抑制蛋白质合成并激活 ATF4 表达,表明经典的氨基酸反应途径已被触发。然而,LK 或 LM 对内质网大小没有影响,可能与 LM 上 ATF6 表达升高有关。早期反应基因 JUN 、 FOS 、 EGR1 和 MYC 的表达没有因 EAA 缺乏而升高,但 LM 降低了 EGR1 的表达。LM 还增加了 HIF1A 的表达。EGR1 和 HIF1A 的表达结果与观察到的细胞增殖率下降一致。不同时间点 SREBF1 表达对 LK 和 LM 的不同反应可能导致对脂肪生成率没有影响。这些发现表明,EAA 缺乏可能通过转录因子抑制乳腺蛋白质的合成和细胞增殖。
CD44 是一种细胞表面粘附受体和干细胞生物标志物,最近与慢性代谢疾病有关。CD44 的消融可改善肥胖中的脂肪组织炎症和胰岛素抵抗。在这里,我们研究了人类和小鼠脂肪组织中细胞类型特异性 CD44 的表达,并进一步研究了前脂肪细胞中的 CD44 如何调节脂肪细胞功能。使用 Crispr Cas9 介导的基因缺失和慢病毒介导的基因重新表达,我们发现 CD44 的缺失会促进脂肪细胞分化和脂肪生成,而 CD44 的重新表达会消除这种影响并降低 3T3-L1 细胞中的胰岛素反应和脂联素分泌。从机制上讲,CD44 通过抑制 Pparg 表达来实现这一点。通过定量蛋白质组学分析,我们进一步发现细胞周期调节通路大多因 CD44 的缺失而减少。事实上,CD44 的重新表达适度恢复了参与细胞周期所有阶段的蛋白质的表达。这些数据得到了 CD44 缺陷细胞中前脂肪细胞增殖率增加的进一步支持,而 CD44 的重新表达会削弱这种影响。我们的数据表明,CD44 在调节脂肪生成和脂肪细胞功能方面起着至关重要的作用,可能是通过调节 PPARγ 和细胞周期相关通路实现的。这项研究首次提供了证据,表明在前脂肪细胞中表达的 CD44 在调节主要表达 CD44 的免疫细胞之外的脂肪细胞功能方面起着关键作用。因此,针对(前)脂肪细胞中的 CD44 可能为治疗肥胖相关的代谢并发症提供治疗潜力。