图 1. 微生物墨水的设计策略、生产和功能应用示意图。a. 大肠杆菌经过基因改造,通过将源自纤维蛋白的 a(旋钮)和 g(孔)蛋白质结构域与卷曲纳米纤维的主要结构成分 CsgA 融合来生产微生物墨水。分泌后,CsgA- a 和 CsgA- g 单体自组装成通过旋钮-孔结合相互作用交联的纳米纤维。b. 旋钮和孔结构域源自纤维蛋白,它们在血凝块形成过程中的超分子聚合中起关键作用。c. 从工程蛋白质纳米纤维生产微生物墨水的方案涉及标准细菌培养、有限的加工步骤以及不添加外源聚合物。微生物墨水经过 3D 打印以获得功能性活材料。
本文是一系列文章中的第一篇,这些文章全面讨论了微尺度增材制造工艺的最新进展,并提出了解决阻碍其可扩展性的挑战的解决方案。本文探讨了一类称为直接墨水写入/喷射工艺的增材制造技术,研究人员已使用这些技术制造具有不同几何自由度的微尺度部件。本文通过分析材料约束、几何约束和特征尺寸分辨率限制,确定了使用这些工艺进行高通量 3D 微加工的关键挑战!和吞吐量限制。虽然其中一些挑战可以通过新颖的精密工程方法克服,但还有其他几个挑战需要对材料系统、工艺参数和关键部件有深入的了解。本文确定了这些挑战并提出了消除这些挑战的潜在方法,目标是在高吞吐量下制造真正的 3D 部件。!!!
摘要这项研究的重点是通过丝网印刷技术应用导电墨水,以评估创建印刷电极的潜力,并研究洗涤对电阻和柔韧性值的影响。在此范围内,杜邦的两个导电油墨,通过常规丝网印刷方法应用于四种不同的纺织基板,100%棉,50/50棉/聚酯,100%聚酯纤维和100%聚酰胺。墨水也被施加在多只一料织物上。大气等离子体处理以改善对样品的粘附,并将电阻值与不同纤维上未经处理的样品进行比较。值是在清洁和洗涤测试之前和之后测量的,以模拟服装的家庭处理,以预测正常使用织物后墨水的行为。在5和10洗涤周期后,还评估了织物刚度等舒适性能。观察到,PE 825墨水在织物表面上形成较厚的膜,导致纺织品的柔韧性丧失。但是,这也从耐用性和较低的电阻值方面取得了最佳结果。pa织物由于墨水和纤维之间产生薄弱的粘结而失去了5个洗涤周期后的导电性能,而棉纤维则取得了最佳效果。关键术语导电墨水,智能服装,丝网印刷,洗涤牢度1。因此,要获得电子和织物之间的兼容性是必不可少的,即弯曲或拉伸时的行为[1]。简介纺织品中应用的灵活电子系统是一种有趣的方法,用于监视位置,姿势,活动参数,生物电信号等。有关于不同柔性材料以及实现灵活电子系统的应用和研究。将导电糊转移到纺织底物上是该领域的研究主题之一,其中大量研究探索了实现这一目标的方法。尽管喷墨印刷[2-4]有几次尝试,但由于其低成本,大多数研究都集中在丝网印刷[1,5-16]上。可以通过这些方法来实现能够测量心率或呼吸运动的系统,或能够从身体或环境中积累能量(太阳,雨)的系统[5]。在这些系统中,导电模式是在预定区域中创建的,而不是覆盖整个纺织品表面[7]。可以根据传感器的最终目标创建不同的应用,例如拉伸[2],心电图监测[6,7,12,16],压力[10,17],Healthcare [8,9],Tribo-Sensors [11],SuperCapitors [13]和Solar Cells [13]和Solar Cells [14,15]。耐用性,即这些电子系统的清洗性现在是出色的问题。Ankhili等。 [7]强调,电子系统的可靠性和清洗性是为了开发商业产品而必须研究的关键问题。 因此,他们专注于开发用于长期的纺织电极Ankhili等。[7]强调,电子系统的可靠性和清洗性是为了开发商业产品而必须研究的关键问题。因此,他们专注于开发用于长期
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
作者 NX Williams · 被引用 42 次 — 这项工作得到了国防部的支持。国防部国会指导的医学研究。计划 (CDMRP),奖励编号为 W81XWH-。17-2-0045 和...
作物的遗传修饰(GM)始于发现土壤细菌农杆菌可用于将有用的基因从无关物种转移到植物中。BT基因是最常用的基因之一。它产生一种对人类无害但能够杀死害虫的农药毒素。已经生产了许多新的作物类型。其中大多数被修改为害虫,疾病或除草剂耐药性,包括小麦,玉米,油菜,土豆,花生,西红柿,豌豆,甜辣椒,生菜和洋葱。支持者认为,耐旱或耐盐的品种会在恶劣的条件下蓬勃发展。避免昆虫的作物通过最大程度地减少农药的使用来保护环境。与额外维生素A或蛋白质增强土豆的金米可以改善营养。批评家担心转基因食品会产生无法预料的影响。有毒蛋白可能会产生,或者可以将抗生素抗性基因转移到人肠道细菌中。修改农作物可能会变成耐二元的“超级草”。改良的农作物也可能意外用野生植物或其他农作物繁殖。例如,如果已修改的农作物生产用粮食作物繁殖的药物,这可能是严重的。研究表明,确实发生了意外基因转移。一项研究表明,从风中,通过风携带了数十公里的转基因花粉。另一项研究证明,基因已经从美国传播到墨西哥。
摘要本文强调了诸如厚膜丝网印刷,墨水射流和后发射薄膜工艺等技术的可能组合,并结合激光滴定的细vias,以产生高密度的微型LTCC底物。为了获得内层的银色图案,在陶瓷绿色的床单上应用了常规的厚膜印刷和墨水喷射印刷(使用纳米银颗粒分散墨水)。墨水喷气工艺使用线/空间= 30/30 m m的细线进行金属线。对于层间连接,使用了由紫外线激光形成的直径30 m m的细vias。然后将这些床单彼此堆叠并发射以获得基础。在此基底物上,通过薄膜过程形成了用于翻转芯片的细铜图案。表面表面均由镍钝化和通过电板沉积的金层。用于进行迹线的三个图案操作和细vias的紫外线激光钻孔的组合使得实现精细的螺距LTCC,例如,用于Flip Chip设备安装。