摘要 - 与循环微泡注射结合的经颅聚焦超声(FUS)是唯一的非侵入性技术,它在时间和局部局部打开了血脑屏障(BBB),使靶向的药物允许进入中枢神经系统(CNS)。但是,单元FUS技术不允许同时靶向具有高分辨率的几个大脑结构,并且需要多元素设备来补偿头骨引入的畸变。在这项工作中,我们介绍了声学全息图在小鼠的两个镜像区域进行双侧BBB开口的第一个临床前应用。该系统由一个以1.68 MHz工作的单元素集中的换能器组成,并与3D打印的声性全息图耦合,旨在在体内在麻醉的小鼠中产生两个对称焦点,同时构成了由骷髅头造成的波段差异。T1赢得的MR图像显示在两个对称的准球面斑点处的gadolinium散发。通过编码时间转换领域,全息图能够在小型临床动物头骨内部多个斑点的衍射极限附近以分辨率的分辨率聚焦的声能。这项工作证明了全息图辅助BBB开放对单独半球对称区域中中枢神经系统中的低成本和高度局部靶向药物递送的可行性。
SAM 技术分析反射波和透射波的强度和相位,以创建反映样本声阻抗变化的视觉图像,从而揭示内部裂纹和缺陷,例如分层和空隙。在这种无损检测过程中,压电换能器会产生超声波,该换能器将电信号转换为声信号,反之亦然(检测阶段)。通过一组声透镜将声波聚焦在样本内部,以检查系统的内部。
吴玉成现为合肥工业大学特聘教授、博士生导师。2000年获中国科学院凝聚态物理博士学位。目前的研究兴趣主要集中在聚变材料、能源相关材料和功能纳米材料上。他曾在世界各地担任各种学术职务,包括圣安德鲁斯大学名誉教授(2013-)、皇家墨尔本理工大学客座教授(2012-)、中国微米纳米技术学会理事(2012-)、国家先进能源环境材料国际科技合作基地主任(2017-)。他在Science Advances、Advanced Materials、Advanced Functional Materials、ACS Nano等期刊上发表了300多篇同行评议科学论文,总引用次数超过12 000次。
声学超材料具有传统材料所不具备的异常反射和折射率,在工程应用中日益受到重视。这些人工结构可以实现多种新功能,例如负有效特性、非凡的波操控、增强的吸声和隔音、隐形、声波聚焦以及高效的能量收集。为了评估声学超材料领域的研究进展,我们采取了一种新颖的视角,追溯了从被动声学超材料到主动压电声学超材料的发展。本文总结了声学超材料的最新研究进展,第一部分描述了被动声学超材料,第二部分转向主动压电声学超材料和超表面。内容包括它们的一般定义、机制、分类、结构和潜在应用。最后,我们从实际工程的角度回顾了当前的技术挑战,并讨论了该领域的未来前景。
气候变化被认为是全球最大的挑战,在其最前沿是能源的话题。虽然非常重要,但有关能源的辩论已成为一种正常性。与能源储能应用的材料合成相关领域也在增长,以及对可再生能源的工业电气化需求。水性超级电容器是一种能够提供高功率密度的储能设备,同时在环境友好的媒体中保持长期环环性。但是,他们的挑战包括在能量密度,安全性和低成本的电极生产方面保持较高的表现。mxene是由H,OH和F组终止的二维过渡金属碳化物/氮化物的家族。该材料表现出与其3D母体材料最大相位的能源应用相关的出色物理和化学特性。自2011年发现以来,由于其高电导率(20,000 s.cm -1)和可以达到900 FCM -3的体积功能,MXENE(例如Ti 3 C 2 T Z)在储能领域得到了广泛研究。但是,报告的MXENE的合成过程充满了耗时的危险程序。本文的第一部分提出了一种新的Ti 3 C 2 T Z Mxene合成的创新方法,其中MXENE在几毫秒内合成了MXENE,借助30 MHz频率表面声波(SAW)和0.05m的LIF。在硫酸电解质中研究了MO 1.33 CT Z。MO 1.33 CT ZTi 3 Alc 2 Max相中的铝元素被所谓的“局部HF”蚀刻,并将粉末转化为2d Ti 3 C 2 T Z。该方法显示了与先前报道的合成技术相当的MXENE,如该材料的电型性能所证明的那样。该论文的第二部分着重于研究相对较新的MXENE家族在水溶液中产生的I-含量的电化学性能。i -mxene在2017年报道,具有化学式MO 1.33 ct z,是平面内化学有序化学蚀刻的产物(MO 2/3 SC 1/3)2 ALC I -MAX相。该电解质为电极电位窗口和电容设置了极限,因此,使用后处理方案来增强电化学性能。
拓扑声学领域的灵感来源于凝聚态物质中拓扑绝缘体的发现,拓扑绝缘体是一类具有极不寻常电传导特性的材料。与传统半导体一样,拓扑绝缘体的特点是价带和导带之间存在电子能量间隙(带隙)。对于该带隙内的电子能量,拓扑绝缘体在其本体中不导电,因此得名。然而,任何有限的此类材料样本都必然支持沿其物理边界的传导电流;价带和导带的拓扑特征确保了这些边界电流的存在。因此,这些电流的存在与边界形状或不影响带隙拓扑的连续缺陷和瑕疵的存在无关。了解了这一特性,我们只需分析无限介质能带的拓扑特征,就能预测沿此类材料的任何有限样本边界流动的传导电流的存在(Thouless 等人,1982 年;Haldane,1988 年)。因此,这些电流对缺陷和无序表现出不同寻常的稳健性。电子自旋在定义这些材料的拓扑响应方面起着根本性的作用。
膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路
设计病毒载体进行声学靶向基因传递 Hongyi Li 1、John E. Heath 1、James S. Trippett 3、Mikhail G. Shapiro 2,*、Jerzy O. Szablowski 2,3,4 * 1 美国加利福尼亚州帕萨迪纳市加州理工学院生物与生物工程部 2 美国加利福尼亚州帕萨迪纳市加州理工学院化学与化学工程部 3 美国德克萨斯州休斯顿市莱斯大学生物工程系 4 美国德克萨斯州休斯顿市莱斯大学莱斯神经工程计划 * 通信地址为 MGS (mikhail@caltech.edu) 和 JOS (jszab@rice.edu) 摘要 靶向基因传递到大脑是神经科学研究的重要工具,并且具有治疗人类疾病的巨大潜力。然而,腺相关病毒 (AAV) 等常见基因载体的位点特异性递送通常通过侵入性注射进行,这限制了它们的研究和临床应用范围。或者,非侵入性地进行的聚焦超声血脑屏障开放 (FUS-BBBO) 使 AAV 能够从体循环进入大脑的位点特异性。然而,当与天然 AAV 血清型结合使用时,这种方法的转导效率有限,需要接近组织损伤极限的超声参数,并导致不良的外周器官转导。在这里,我们使用高通量体内选择来设计专门设计用于 FUS-BBBO 部位局部神经元转导的新型 AAV 载体。所得载体显著增强了超声靶向基因递送和神经元向性,同时减少了外周转导,使靶向特异性提高了十倍以上。除了增强唯一已知的非侵入性靶向基因递送到特定大脑区域的方法外,这些结果还确立了 AAV 载体进化为特定物理递送机制的能力。