图 2. 声子介导的量子态转移和过程层析成像。a 测量的 Q 1 激发态群体 PQ 1 e 与时间和 Q 1 裸频率的关系,耦合器 G 1 处于中间耦合 κ 1 / 2 π = 2.4 MHz(在 3.976 GHz 处测量),G 2 设置为零耦合。在这种配置中,Q 1 的能量弛豫主要由通过 UDT 1 的声子发射主导,其次是行进声子动力学。白色和红色虚线分别表示单向和双向工作频率(见正文);插图显示量子位激发和测量脉冲序列。b 通过行进声子在单向(左)和双向(右)工作频率下进行量子态转移。与单向传输相比,双向传输的 Q 2 的最终群体要小 4.5 倍,这与模拟结果一致。绿色实线来自主方程模拟。插图:脉冲序列。对于任一过程,Q 1 的发射率均设为 κ uni | bi c / 2 π = 10 | 6 MHz,对应于 81 | 138 ns 的半峰全宽 (FWHM) 声子波包。c 单向和双向区域的量子过程层析成像,过程保真度分别为 F uni = Tr ( χ exp · χ ideal ) = 82 ± 0 . 3 % 和 F bi = 39 ± 0 . 3 %。红色实线显示理想传输的预期值;黑色虚线显示主方程模拟,其中考虑了有限量子比特相干性和声子通道损耗。不确定性是相对于平均值的标准偏差。
机器学习在材料设计、发现和属性预测方面表现出了强大的能力。然而,尽管机器学习在预测离散属性方面取得了成功,但连续属性预测仍然存在挑战。由于晶体对称性的考虑和数据稀缺,晶体固体的挑战更加严峻。这里,仅使用原子种类和位置作为输入来演示声子态密度 (DOS) 的直接预测。应用欧几里得神经网络,其构造等同于 3D 旋转、平移和反转,从而捕捉完整的晶体对称性,并使用约 10 3 个示例的小型训练集(包含超过 64 种原子类型)实现高质量预测。预测模型再现了实验数据的关键特征,甚至可以推广到具有看不见元素的材料,并且自然适合有效预测合金系统而无需额外的计算成本。通过预测大量高声子比热容材料,证明了该网络的潜力。该工作表明了一种探索材料声子结构的有效方法,并可进一步快速筛选高性能储热材料和声子介导的超导体。
摘要 . 声流体技术结合了声学和微流体技术,为操纵细胞和液体提供了一种独特的方法,广泛应用于生物医学和转化医学。然而,由于多种因素,包括设备间差异、手动操作、环境因素、样品差异等,标准化和保持当前声流体设备和系统的优异性能具有挑战性。在此,为了应对这些挑战,我们提出了“智能声流体技术”——一种涉及声流体设备设计、传感器融合和智能控制器集成的自动化系统。作为概念验证,我们开发了基于智能声流体技术的微型生物反应器,用于人脑类器官培养。我们的微型生物反应器由三个组件组成:(1)通过声螺旋相涡旋方法进行非接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像头,以及(3)基于强化学习的控制器,用于闭环调节旋转操作。在模拟和实验环境中训练基于强化学习的控制器后,我们的微型生物反应器可以实现转子在孔板中的自动旋转。重要的是,我们的微型生物反应器可以实现对转子的旋转模式、方向和速度的出色控制,而不受转子重量、液体体积和工作温度波动的影响。此外,我们证明了我们的微型生物反应器可以在长期培养过程中稳定地保持脑类器官的转速,并增强脑类器官的神经分化和均匀性。与目前的声流体相比,我们的智能系统在自动化、稳健性和准确性方面具有卓越的性能,凸显了新型智能系统在生物电子学和微流体实验中的潜力。
在我们的工作中,我们还实施了交叉验证,以提高模型的准确性。交叉验证是用于评估模型性能的机器学习中的一种技术。它有助于确保预测模型对看不见的数据的概括。它涉及将数据分配到不同的集合中,并将结果从不同的分区集获得。有不同类型的交叉验证,例如分层的k折交叉验证,k折的交叉验证,遗留一个交叉验证等[10]。是工作,我们使用了k折的交叉验证。在k折的交叉验证中,数据集分为k折,每个倍数用作验证集,并且测量了每次迭代的精度,最终精度是所有k迭代的平均值[11]。
Corona-Virus(Covid-19)极大地削弱了整个世界,最终摇摆了人们的生活方式,人民的认知健康[1]。为了限制Covid-19的传播,大多数国家都施加了部分或完全的封锁。但是,nowa-days,大多数国家已经开始了解锁的阶段。大多数服务已经重新启动,并且个人可以按照政府的咨询和预防措施自由移动。完整的世界贸易业务和全球基于海事行业和海员的重要性。运输被公认为是全球性和外汇的支柱。超过200万海员正在全球工作,并支持所有海上交易[2]。与其他专业人员一样,极端的工作条件,工作责任,不稳定的时间表,化学危害,打捞潜水,石棉病和心理社会因素正在引起海员和水手们的高度压力(心理障碍)。不幸的是,Covid-19的影响也对航运和海洋产业的影响也被看到。该研究表明,在这种大流行期间(共同19)(样本研究的50%)(在样本研究中)并不感到安全,并且超过50%的员工对处理这种全球流行病采取的预防措施不满意[3]。所有这些担忧都在毁灭他们的心理和身体状态。毫无疑问,人民已经开始工作。然而,仍然非常害怕患有19 covid-19的感染。个体的精神状态受到了极大的影响,因此,大多数人都患有不同的精神病和神经精神疾病。单个Covid-19受害者可以在船上造成混乱。这种混乱会引发不同旅行的人的压力以及其他人类心理障碍
捕获离子为量子计算和模拟提供了一个原始平台,但提高它们的相干性仍然是一个关键挑战。在这里,我们提出并分析了一种新策略,通过参数放大离子的运动来增强捕获离子系统中的相干相互作用——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及它如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展捕获离子量子计算的重要组成部分。我们的研究结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
声悬浮可能构成常规过程的替代方法,例如生物反应器,用于在干细胞上应用受控的机械刺激,因为它是具有易于定义的边界连接的非接触方法(Argyri等,2023)。的确,细胞对其机械环境特别敏感,因此通过机械转导过程(Zhang&Habibovic,2022)不断响应,可能导致其分化。这种对外部刺激的依赖性使机械生物学成为再生医学的关键领域。然而,先前的研究使用声液化来获得细胞在薄层中的空间分布以产生球体(Jeger-Madiot等,2021)或多层组织,例如在流体环境中(Tait等人,2019年)中的上皮组织,而不是直接刺激细胞。迄今为止,尚无工作重点是用于生物学和医疗目的的液滴中细胞的循环载荷。该项目旨在通过开发专用的设置与模拟结合在声音悬浮过程中更好地了解凝胶和水凝胶液滴的机械响应,从而在即将到来的干细胞培养中建立了外部刺激与细胞局部机械环境之间的宏观链接。
捕获离子量子信息处理的常用方法是利用电子态存储信息,而离子链共享的运动模式可实现纠缠操作[1]。然而,运动模式可以发挥更积极的作用。例如,运动自由度可用于存储量子信息[2],从而允许使用捕获离子进行连续变量的量子信息处理。运动模式也是量子逻辑谱学中非常重要的工具[3],这使得精确的原子钟成为可能[4]。此外,在计量学中,非经典离子运动状态可以发挥优势[5 – 7]。从更基本的方面来看,捕获离子运动在量子热力学研究中充当工作介质[8 – 10]。研究陷阱势变化时声子对产生的动力学可以模拟粒子的产生,从而建立量子信息处理和宇宙学之间的联系[11]。最后,局部声子的测量及其跟踪使得运动自由度的量子模拟成为可能[12,13]。捕获离子的运动可以用各种方法测量[8,12,14 – 19],包括通过交叉克尔非线性[18,20,21]和复合脉冲序列[12]。还有使用快速绝热通道(RAP)[22,23]和受激拉曼绝热通道(STIRAP)[24]序列或多色振幅调制的方案
[1] DM Rowe,CRC热电手册,CRC出版社,佛罗里达州博卡拉顿,1995年。 [2] AJ Minnich、MS Dresselhaus、ZF Ren、G Chen,能源与环境科学2009,2,466。[3] S Bathula、M Jayasimhadri、B Gahtori、NK Singh、K Tyagi、AK Srivastava、A Dhar,纳米尺度2015,7,12474合金与化合物杂志2018,746,350。[5] Tian Y、Sakr MR、Kinder JM、Liang D、MacDonald MJ、Qiu H.-J. Gao,XPA Gao,Nano信件2012,12,6492。[6] S. Acharya,D。Dey,T。Maitra,A。Soni,A。Taraphder,应用物理信件2018,113,193904(1。[7] ANO信件2012,12,4305。[8] L.-D. ,C.-I。Wu,TP Hogan,DN Seidman,副总裁Dravid,Mg Kanatzidis,自然2012,489,414。[10] S. Acharya,J。Pandey,A。Soni,A. Soni,Applied Physics Letters,2016,109,109,109,133904。 ,139,4350。[12] T. Takabatake,K。Suekuni,T。Nakayama,E。Kaneshita,评论,现代物理学2014,86,669 ,A。Soni,应用物理信2020,117,123901。[16] P. Acharyya,T。Ghosh,K。Pal,K。Kundu,K。SinghRana,J。Pandey,J。Pandey,J。Pandey,A。Soni,A。Soni,A。Soni,uv Waghmare,K。Biswas,K。Biswas,美国化学学会杂志,美国化学学会杂志2020,142,142,142,15595。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。