摘要 . 声流体技术结合了声学和微流体技术,为操纵细胞和液体提供了一种独特的方法,广泛应用于生物医学和转化医学。然而,由于多种因素,包括设备间差异、手动操作、环境因素、样品差异等,标准化和保持当前声流体设备和系统的优异性能具有挑战性。在此,为了应对这些挑战,我们提出了“智能声流体技术”——一种涉及声流体设备设计、传感器融合和智能控制器集成的自动化系统。作为概念验证,我们开发了基于智能声流体技术的微型生物反应器,用于人脑类器官培养。我们的微型生物反应器由三个组件组成:(1)通过声螺旋相涡旋方法进行非接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像头,以及(3)基于强化学习的控制器,用于闭环调节旋转操作。在模拟和实验环境中训练基于强化学习的控制器后,我们的微型生物反应器可以实现转子在孔板中的自动旋转。重要的是,我们的微型生物反应器可以实现对转子的旋转模式、方向和速度的出色控制,而不受转子重量、液体体积和工作温度波动的影响。此外,我们证明了我们的微型生物反应器可以在长期培养过程中稳定地保持脑类器官的转速,并增强脑类器官的神经分化和均匀性。与目前的声流体相比,我们的智能系统在自动化、稳健性和准确性方面具有卓越的性能,凸显了新型智能系统在生物电子学和微流体实验中的潜力。
主要关键词