预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月19日发布。 https://doi.org/10.1101/2025.01.15.633177 doi:biorxiv preprint
开发针对利什曼原虫的保护性疫苗取决于抗原配方和诱导特异性免疫和持久免疫反应的佐剂。我们之前证明,鼻腔内接种编码 p36/LACK 利什曼原虫抗原 (LACK-DNA) 的质粒 DNA 的 BALB/c 小鼠在接种疫苗后可产生长达 3 个月的保护性免疫,这与疫苗 mRNA 在外周器官中的全身表达有关。在本研究中,LACK-DNA 疫苗与交联甘油醛 (CMC) 的生物相容性壳聚糖微粒相结合,以增强对晚期利什曼原虫攻击的持久免疫力。与未接种疫苗的对照组相比,接种疫苗后 7 天、3 或 6 个月感染导致寄生虫负荷显著降低。此外,接种 LACK-DNA-壳聚糖疫苗的小鼠在晚期时间点攻击后表现出长期保护作用。所获得的保护与脾细胞对寄生虫抗原的增强反应相关,其特点是增殖和 IFN-g 增加以及 IL-10 产生减少。此外,我们发现 TNF-a 的系统水平降低,这与 LACK-DNA/CMC 疫苗接种感染小鼠中观察到的较好健康状况相一致。总之,我们的数据表明壳聚糖微粒作为递送系统工具来延长 LACK-DNA 疫苗赋予的保护性免疫的可行性,这可以在针对利什曼原虫感染的疫苗制剂中进行探索。
在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
在过去几十年中,含丁质废物的利用已成为一项紧迫的任务。当前的工作旨在研究壳聚糖(主要几壳蛋白成分之一)用于制备磁性可分离的生物催化剂。合成了基于固定在Fe 3 O 4纳米颗粒上的葡萄糖氧化酶(GOX)的多组分生物催化剂,合成了用壳聚糖和三聚磷酸钠修饰的纳米颗粒。用1-乙基-3-(3-二甲基氨基丙基)碳化二酰亚胺盐酸(EDC)和N-羟基糖糖酰亚胺(NHS)预先激活GOX的羧基。傅立叶转换红外光谱和低温氮的物理吸附被证明成功地修饰了磁性可分离的支撑物,并用细壳聚糖层成功。还确认了在支撑表面上的目标官能团的存在。在D-葡萄糖对D-葡萄糖 - δ-乳酮的氧化反应中研究了生物催化剂的活性和稳定性。固定的生物催化剂的活性略低于天然酶的活性。然而,固定的酶可以通过外部磁体轻松地与反应混合物分离,并实际上重复使用而不会丧失活性。确定了提供最大活性和稳定性的生物催化剂成分的比率。已经表明,与天然酶相比,通过上述方法固定GOX会导致pH和温度的工作范围增加15-20%。合成的生物催化剂可用于产生葡萄糖酸并确定各种流体中D-葡萄糖的浓度。
自然化合物的治疗潜力由于研究人员的生物相容性提高和可持续的起源而引起了研究人员的兴趣。Chitosan对其治疗特性及其在食品和饮料领域的广泛应用引起了极大的关注。壳聚糖寡糖(COS)是壳聚糖的衍生物,通常表现出比其母体化合物更好的生物学特性,从而扩大了对其潜在益处的兴趣。壳聚糖具有多种生物学特性,包括抗菌,抗氧化剂和抗炎化合物。研究已经阐明了壳聚糖的特定化学特征,例如分子量和脱乙酰化程度,影响这些生物学活性。值得注意的是,较低的分子量和较高程度的脱乙酰化倾向于增强壳聚糖的生物学特性。因此,研究越来越集中于探索cos的潜力。对这些化合物的研究已在管理各种疾病中揭示了有希望的应用,包括代谢综合征,糖尿病(DM),高胆固醇血症和肥胖症。
创伤性脊髓损伤(SCI)是中枢神经系统的严重伤害之一。氧化应激被认为是SCI继发期的迹象之一。因此,在患有脊髓损伤的大鼠中装有硒纳米颗粒的壳聚糖水凝胶的受控药物输送系统的设计和局部应用也被认为是神经组织中抗氧化剂变化的评估。为此,在60名女性大鼠中造成了实验性脊髓损伤,并将其随机分为三组; 1-对照组; 2-壳聚糖水凝胶组和3-壳聚糖水凝胶,装有硒纳米颗粒组。在受伤后的第3,第7,21和28天测量了脊髓组织中某些抗氧化剂的活性。结果清楚地表明,在治疗组创伤后的第3天和第7天,超氧化物歧化酶,丙二醛和谷胱甘肽过氧化物酶的数量的变化显着低于对照组。然而,在治疗组中,与对照组相比,过氧化氢酶活性水平并不显着。在本研究的两个治疗组中,脊髓(损伤部位)中自由基的创伤和产生可能较少。因此,通过减少损伤区域中氧化应激的量,带有硒纳米颗粒的壳聚糖水凝胶可能会对SCI产生积极影响。
我们观察到在实验模型中在胸膜流体中检测到的IL-6显示出与VEGF产生相同的行为。IL-6由MPE中的各种细胞群体分泌,包括癌细胞,巨噬细胞和胸膜间皮细胞。在所有组中,该细胞因子的水平略有升高,除了在14天后用紫杉醇治疗的组和21天的对照组治疗的组,这可能表明局部炎症反应在响应发育中的肿瘤对胸膜损伤的响应。
研究人员反复强调了我们如何迫切地减少大量氮肥的消耗,以支持农业生产力并保持可持续的生态系统。使用壳聚糖(CS)作为缓慢释放的载体被认为是降低合成肥料和提高作物生产率的潜在工具。因此,在随机完整的块设计中布置了两个现场实验,以研究七种治疗方法的影响,包括合成肥料和基于壳聚糖的NPK纳米结构(CH/NPS-NPK)的外源应用对生产率,生产力和营养特征的增长,生产率和营养特征的全球策略作物的2022222222年季节和2023年的2023年季节的营养特征。实验处理为:T1 =全建议合成NPK(推荐尿素,超磷酸,硫酸钾;对照治疗),T2 = 70%T1+ CH/ NPS-NPK 100 ppm,T3 = 70%,T1+ CH/ NPK 200 ppm的T1+ CH/ NPK 200 ppm,T5 = 70%PPM = 70%= 70%ppm,TPM的TPM, T1+ CH/NPS-NPK 100 ppm,T6 = T1+ CH/NPS-NPK 200 ppm的30%,T7 = T1+ CH/NPS-NPK的30%300 ppm。结果表明,T4(即推荐的NPK+ CH/NPS-NPK 300 ppm的70%)和T1(完全推荐的合成NPK)导致了与其他处理相比,水稻的最高和最显着的生长和最重要的大米特征以及营养谷物含量。因此,将70%的推荐NPK与CH/NPS-NPK 300 ppm结合在一起,作为一种外源应用,可以是将合成NPK肥料降低30%的明智选择,而在帕迪领域中,在应用完整推荐的NPK时,在不产生生长,产量特征或营养谷物方面会大幅下降,而不会产生大幅下降。
摘要简介:天然生物聚合物用于医疗保健中的各种目的,例如组织工程,药物输送和伤口愈合。细菌纤维素和壳聚糖在本研究中首选,因为它们的非毒性,可生物降解,生物相容性和非炎性特性。该研究报告了磁细菌纤维素 - 壳聚糖(BC-CS-FE 3 O 4)纳米复合材料的发展,该纳米复合材料可用作组织工程的生物相容性支架。氧化铁纳米颗粒被包括在该复合材料中,以提供超顺磁特性,这些特性在各种应用中有用,包括成骨分化,磁成像,药物输送和用于癌症治疗的热诱导。方法:通过将Fe 3 O 4浸入细菌纤维素 - 壳聚糖支架的混合物中,然后将其冷冻干燥来制备磁性纳米复合材料。使用FE-SEM和FTIR技术表征所得的纳米复合材料。通过实验评估了支架的肿胀比和机械强度。使用PBS在37°C下使用PBS 8周评估支架的生物降解性。使用人脂肪衍生的间充质干细胞(ADSC)和艾丽莎白红染色研究了纳米复合材料的细胞毒性和成骨分化。单向方差分析带有Tukey的多重比较测试进行统计分析。 结果:FTIR光谱证明了纳米颗粒官能团之间的键形成。 fe-Sem图像显示了原纤维网络的完整性。单向方差分析带有Tukey的多重比较测试进行统计分析。结果:FTIR光谱证明了纳米颗粒官能团之间的键形成。fe-Sem图像显示了原纤维网络的完整性。磁性纳米复合材料具有最高的肿胀比(2445%±23.34)和拉伸强度(5.08 MPa)。8周后,BC,BC-CS和BC-CS-FE 3 O 4支架的生物降解比分别为0.75%±0.35、2.5%±0.1和9.5%±0.7。与其他支架相比,磁性纳米复合材料的毒性低(P <0.0001)和更高的成骨潜力。结论:基于其高拉伸强度,低吸水性,合适的降解性,低细胞毒性和高能力诱导干细胞增加钙沉积的能力,磁性BC-CS-FE 3 O 4纳米复合材料型支架可以作为替代性分化的二型候选者。
摘要 :青贮复水玉米粒 (RC) 已被用于提高营养价值和促进农场储存。本研究评估了壳聚糖和乳酸微生物接种剂对青贮复水玉米微生物学、发酵特性和损失、化学成分、体外降解和有氧稳定性的影响。采用完全随机设计,使用了 40 个实验筒仓来评估以下处理:1) 对照 (CON):不含添加剂的 RC 青贮饲料;2) 壳聚糖 (CHI):含 6 g/kg 干物质 (DM) 壳聚糖的 RC 青贮饲料;3) 布赫纳乳杆菌 (LB):每克鲜重用 5 × 10 5 个 L. buchneri 菌落形成单位 (CFU) 的 RC 青贮饲料; 4) 植物乳杆菌和乳酸干酪杆菌 (LPPA):RC 每克鲜重青贮饲料中接种 1.6 × 10 5 个植物乳杆菌和 1.6 × 10 5 个乳酸干酪杆菌。添加剂增加了乳酸菌数量以及乳酸和丙酸浓度,减少了霉菌和酵母数量以及气体和发酵损失,提高了干物质回收率。与接种微生物的青贮饲料相比,CHI 青贮饲料的 pH 值、氨氮浓度和发酵损失均较低,而乙酸浓度较高。此外,CHI 和 LB 降低了青贮饲料有氧暴露后的 pH 值和温度。虽然各种处理对 RC 的营养价值影响不大,但 CHI 提高了青贮饲料的有氧稳定性,减少了发酵损失。 关键词 : 发酵概况、仁粒青贮饲料、乳酸菌、L. buchneri。