摘要:原油泄漏引起了相当大的环境问题,因此要求开发有效,可持续和环保的补救解决方案。在这项研究中,我们使用藻酸钠和壳聚糖合成并评估了可生物降解的聚合物过滤器的效率,以治疗油泄漏。使用逐层自组装技术与棉绒作为过滤器培养基合成,通过浸入方法合成了藻酸钠水凝胶聚凝胶聚凝胶复合物(SACHPC)滤波器。根据回收油的流量和过滤器的可重复性评估过滤器的效率。使用SACHPC过滤器对0.5 m的模拟油泄漏进行过滤。基于1升油通过过滤器所需的时间确定流量。SACHPC滤波器在酸性,中性和碱性条件下表现出具有特殊过滤效率(> 98.3%)(pH 3、7和11),具有特殊的过滤效率(> 98.3%)。过滤器的流速为120 mL/min,而第三使用过滤器的流量降低为50 mL/min。此外,该过滤器的原油回收率达到85%。X射线衍射分析在存在无定形相的情况下证实了原油的吸附,而扫描电子显微镜分析揭示了SACPHC滤波器的结构形态。总体而言,SACHPC过滤器保持高过滤效率,从而为油性废水纯化和溢油清理提供了可持续的策略。关键字:漏油,聚电解质,过滤器,壳聚糖,水凝胶,藻酸钠。[收到2024年8月29日; 2024年9月10日修订; 9月10日,2024年9月10日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
Abstract ................................................................................................................................................... 1
5化学系教授-DQ -CCT在过去的几十年中,在环境中的废水中发现了一些称为新兴的新污染物。这些污染物可以是药物,工业废物,农药等物质。此外,尚无对这些物质的组成和风险的全部了解,尽管这些物质以低浓度的形式可能存在于人们的环境和健康中(Zhao等,2024)。合成染料被广泛用于行业的各个部分,因为它们将颜色归因于与自然起源相比(Bakhnooh; Arvand,2024)更加稳定和便宜的产品。食品行业中使用最广泛的化合物之一是暮光黄色染料,其特征是橙色的颜色,它以几种饮料,糖果,冰淇淋,冰淇淋,蛋糕等以及其他产品(Balram等,2023)中存在。尽管有广泛的用途,但研究表明,大量食用时,该物质与健康问题有关,这可能导致过敏,皮肤刺激,突变,胃肠道疾病甚至癌症(Zhang等,2022)。此外,它代表了一个环境问题,因为它能够干扰水生生态系统,从而大大损害了存在的生物和动物(Abumelha,2024)。
摘要:壳聚糖是在广泛的医疗应用中最常见的功能性阳离子生物聚合物,因为其有希望的特性,例如生物相容性,生物降解性和生物粘附性及其众多生物活性。在过去的三十年中,除了其生物活性特性外,壳聚糖及其衍生物已被研究为药物和疫苗输送系统的生物材料。由于其结构中的官能团,可以根据所需属性调整输送系统。对基于壳聚糖的系统的应用也引起了人们的极大兴趣,这也是用于预防和治疗传染病,特别是由于它们的抗菌,抗病毒和免疫刺激作用。在这篇综述中,审查了壳聚糖在预防和治疗传染病中的最新应用,并讨论了有关技术和法规方面的可能性和局限性。最后,讨论了关于壳聚糖作为生物材料的未来观点。
parpi目前是几十年来治疗卵巢癌的最重要突破,并且已融入了卵巢癌的初始维持疗法中。然而,导致PARPI耐药性的机制仍然没有核定。我们的研究旨在筛选新的目标,以更好地预测对PARPI的耐药性并探索潜在机制。在这里,我们对TCGA卵巢癌队列中的铂敏感和抗铂抗性基团之间的差异表达基因进行了比较分析。分析表明,与TCGA-ov队列中抗铂的个体相比,LNCRNA Part1在铂敏感的患者中得到了高度表达,并在GEO数据集和Qilu医院队列中进一步验证。此外,部分1的上调与卵巢癌的有利预后正相关。此外,体外和体内实验表明,部分1抑制对顺铂和PARP抑制剂的耐药性并促进了细胞衰老。衰老细胞对化学疗法更具耐药性。RNA反义纯化和RNA免疫沉淀测定法显示了Part1和PHB2(一种至关重要的线粒体受体)之间的相互作用。敲低部分可以促进PHB2的降解,损害线粒体并导致细胞衰老。 救援分析表明,PHB2的过表达明显降低了对PARPI的耐药性和由部分1敲低引起的细胞衰老。 PDX模型被用于进一步确认发现。敲低部分可以促进PHB2的降解,损害线粒体并导致细胞衰老。救援分析表明,PHB2的过表达明显降低了对PARPI的耐药性和由部分1敲低引起的细胞衰老。PDX模型被用于进一步确认发现。总的来说,我们的研究表明,lncRNA Part1有可能成为逆转parpi抗性并改善卵巢癌预后的新颖目标。
由于生物和非生物胁迫及其意外的组合,全球植物的发展和作物生产率大大降低。迄今为止,采用的各种化学物质(农药,肥料和植物调节剂)和基因工程技术来提高农作物对多种压力的耐受性,对环境产生了负面影响,并且耗时。这加快了努力,以寻找更环保的方法来控制植物压力。壳聚糖是一种生物聚合物,在很大程度上是从几丁质的脱乙酰基中提取的,并且似乎是克服这些问题以寻找更环保的解决方案的可行工具。由于其生物相容性,生态友好和经济性,成为农业中最受欢迎的生物聚合物之一。壳聚糖还通过信号转导途径激活防御机制,并转导过氧化氢和一氧化氮的二级分子以清除活性氧。在承受诸如干旱,盐和热量等非生物胁迫之前的壳聚糖已被证明可刺激植物的生长并增强抗氧化剂酶的产生,次生代谢产物和脱甲酸。在干旱中,它有助于积累OSMO - 细胞剂,以维持植物细胞的水潜力。另一方面,植物对壳聚糖的反应根据其结构,剂量,发育阶段和作物类型而变化。牢记这些事实的目的是为了更新有关壳聚糖的最新研究,其各种来源及其在不同作物中的有效浓度,针对生物性和非生物压力管理的作用机制,以改善农业的作物生产。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
近几十年来,抗生素耐药微生物菌株的令人震惊的激增对全球公共卫生构成了重大威胁[1,2]。常规抗菌剂的局限性,例如某些内孢子和病毒的抗菌素耐药性和无效性,因此需要对新型方法进行有效抗击的新方法探索。纳米技术在这方面已成为有前途的途径,为抗菌应用提供了创新的解决方案[3]。纳米结构材料在克服耐药微生物带来的挑战方面表现出了巨大的潜力,为开发具有增强抗菌特性的有效纳米复合材料铺平了道路[4]。羟基磷灰石(HAP)是一种生物相容性和破骨电导材料,对各种生物医学设备和靶向药物递送引起了极大的兴趣。其出色的化学稳定性,无毒的性质和出色的生物相容性使其成为医疗应用的理想候选者[5]。hap是骨形成的主要矿物质,被包裹在胶原蛋白三重螺旋框架中,当与聚合物整合时,纯NHAP和HAP的纳米晶体已在药物递送环境中利用。探索其物理和化学属性与生物学用途的相关性如何成为一个非常有趣的研究主题[6,7]。
1印度Sriperumbudur 602117 Sri Venkateswara工程学院应用化学系; anandhavelu@svce.ac.in(A.S。); anandababu@svce.ac.in(A.B.S.)2印度技术学院化学工程系,印度坎迪502285,印度; CH24IPDF15@IITH.AC.IN 3材料工程,RWTH Aachen University,52062 Aachen,Germany; abbishek.sridharan@rwth-aachen.de 4生物医学工程系,KPR工程技术学院,哥印拜陀641407,印度; swathy.m@kpriet.ac.in 5化学系,国王沙特大学理学院 Box 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。 工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.com2印度技术学院化学工程系,印度坎迪502285,印度; CH24IPDF15@IITH.AC.IN 3材料工程,RWTH Aachen University,52062 Aachen,Germany; abbishek.sridharan@rwth-aachen.de 4生物医学工程系,KPR工程技术学院,哥印拜陀641407,印度; swathy.m@kpriet.ac.in 5化学系,国王沙特大学理学院Box 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。 工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.comBox 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.com
摘要:基因治疗涉及将外源遗传物质引入宿主组织中,以修饰基因表达或细胞特性以进行治疗。最初开发的是为了解决遗传疾病,基因疗法已扩展到涵盖了广泛的疾病,尤其是癌症。有效地将核酸递送到靶细胞中取决于载体,与病毒载体相比,非病毒系统由于其安全性的增强而变得突出。壳聚糖是一种生物聚合物,经常用于为各种生物医学应用,尤其是核酸递送的纳米颗粒制造纳米颗粒,最近强调靶向癌细胞。壳聚糖的带电的氨基基团可以与核酸形成稳定的纳米复膜,并促进与细胞膜的相互作用,从而促进细胞摄取。尽管有这些优点,但基于壳聚糖的纳米颗粒面临诸如生理pH值差的溶解度,癌细胞的非特异性溶解度以及效率低下的内体逃逸,从而限制了其转染效率。为了解决这些局限性,研究人员专注于增强壳聚糖纳米颗粒的功能。策略包括提高稳定性,提高靶向特异性,促进细胞摄取效率以及促进内体逃逸。本综述对这些类别中的最新表述方法进行了批判性评估,旨在提供有关推进基于壳聚糖的基因递送系统的见解,以提高疗效,尤其是在癌症治疗方面。