研究人员反复强调了我们如何迫切地减少大量氮肥的消耗,以支持农业生产力并保持可持续的生态系统。使用壳聚糖(CS)作为缓慢释放的载体被认为是降低合成肥料和提高作物生产率的潜在工具。因此,在随机完整的块设计中布置了两个现场实验,以研究七种治疗方法的影响,包括合成肥料和基于壳聚糖的NPK纳米结构(CH/NPS-NPK)的外源应用对生产率,生产力和营养特征的增长,生产率和营养特征的全球策略作物的2022222222年季节和2023年的2023年季节的营养特征。实验处理为:T1 =全建议合成NPK(推荐尿素,超磷酸,硫酸钾;对照治疗),T2 = 70%T1+ CH/ NPS-NPK 100 ppm,T3 = 70%,T1+ CH/ NPK 200 ppm的T1+ CH/ NPK 200 ppm,T5 = 70%PPM = 70%= 70%ppm,TPM的TPM, T1+ CH/NPS-NPK 100 ppm,T6 = T1+ CH/NPS-NPK 200 ppm的30%,T7 = T1+ CH/NPS-NPK的30%300 ppm。结果表明,T4(即推荐的NPK+ CH/NPS-NPK 300 ppm的70%)和T1(完全推荐的合成NPK)导致了与其他处理相比,水稻的最高和最显着的生长和最重要的大米特征以及营养谷物含量。因此,将70%的推荐NPK与CH/NPS-NPK 300 ppm结合在一起,作为一种外源应用,可以是将合成NPK肥料降低30%的明智选择,而在帕迪领域中,在应用完整推荐的NPK时,在不产生生长,产量特征或营养谷物方面会大幅下降,而不会产生大幅下降。
壳聚糖包被的香蕉 Musa acuminata 和车前草 M. balbisiana 中的凝集素蛋白的纯化和表征,作为检测癌症生物标志物的凝集素分子候选物
Suwabun Chirachanchai 教授作为泰国政府派出的留学生来到日本,学习了日语后,于1982年进入东京学艺大学附属中学就读。 1985年通过普通入学考试考入大阪大学工学部,1989年毕业。后在工学研究科师从竹本喜一教授取得硕士学位,后在朱拉隆功大学石油化学研究科工作。次年回国师从竹本喜一教授,1995年取得工学博士学位。回国后,历任讲师、助教、副教授,2009年晋升为教授,并于2016年至2020年担任研究生院院长至今。我们通过众多国际会议、研讨会和讲座等学术交流活动积极参与持续的国际交流。他不仅活跃在泰国,还担任美国凯斯西储大学、广岛大学、比利时蒙斯大学的客座教授,以及NEDO Moonshot国际评估委员会委员,充分运用从小培养的英语能力,在国际上活跃。其发表的150多篇学术论文多篇发表于国际知名学术期刊,考虑到他任职时泰国高分子科学尚未扎根的状况,其学术贡献令人惊叹。在研究方面,我们专注并持续致力于环境友好的功能高分子材料的开发。他发现了一种独特的溶解方法(水溶性壳聚糖),该方法涉及与水溶性难溶的天然多糖壳聚糖形成离子复合物,该方法得到了许多研究人员的高度评价。 Chirachanchai 教授一直致力于通过增强可生物降解聚合物的功能性来开发环境友好的功能高分子材料,并报告了多种原创性和创新性的研究成果。在泰国,有效利用从蟹壳和虾壳中提取的甲壳素和壳聚糖是一个重要课题,但由于它们的水溶性差,因此仅限于在酸性水溶液或有机溶剂中进行化学反应。他发现缩合反应促进剂1-羟基苯并三唑与壳聚糖形成离子配合物,从而使其溶解于中性水溶液中,并证明了多种缩合反应可在一个步骤中实现。由此开创了“水溶性壳聚糖”这一新领域,并带动了多种高功能材料的诞生。此外,还开发了一种赋予聚醚醚酮质子可转移性的新型表面改性方法。
1. 引言 提高药物溶解度、渗透性和生物利用度一直是其商业化面临的主要挑战之一。在这方面,药物输送系统已被开发成一种有前途的方法 [1,2]。随着纳米技术的进步,人们开发出一类新型纳米粒子,它具有多种优点,如提高药物溶解度、减少所需剂量、持续释放药物、靶向输送药物和提高生物利用度 [3,4]。合成 [5] 和天然聚合物 [6,7] 及其组合 [8] 已被用于药物输送。树胶、粘液和多糖等天然聚合物无毒、生物相容性好、价格低廉且广泛可用。在多糖中,海藻酸钠 (SA) 和壳聚糖 (CS) 已被广泛用于输送不同的药物,例如一种新型药物输送系统 [9–14]。SA 是一种可生物降解且生物相容性的天然聚合物,可导致各种药物凝固。 SA 由 (1-4) 连接的-D-甘露糖醛酸 (M) 和-L-古洛糖醛酸 (G) 以各种排列和比例组成。这种生物聚合物可以在二价阳离子(如 Ca 2+ 、Ba 2+ 、Sr 2+ 和 Zn 2+ )存在下形成水凝胶。此类水凝胶结构可以包封药物,可用于设计 DDS(药物递送系统)[15,16]。多项研究集中于开发用于口服药物控制递送的海藻酸钙 (CA) 珠 [17–19]。CS 是一种线性、生物且无毒的多糖,其中 D-葡萄糖胺和 N-乙酰-D-葡萄糖胺单元通过 β-(1-4) 糖苷键连接。CS 可通过部分破坏几丁质来分离。这种天然多糖已广泛应用于 DDS [20–22]。珠粒中 CA 和 CS 的交联可能对医学和药物研究有用。与组成它们的聚合物相比,这种混合系统可以提供更高的稳定性 [23]。CA 和 CS 纳米载体 (CA-CS NC) 在 DDS 中的应用最近引起了极大关注。例如,Nalini 等人合成了 SA/CS 纳米颗粒 (NP) 用于药物输送,从而提高了治疗效果和疗效 [24]。
开发针对利什曼原虫的保护性疫苗取决于抗原配方和诱导特异性免疫和持久免疫反应的佐剂。我们之前证明,鼻腔内接种编码 p36/LACK 利什曼原虫抗原 (LACK-DNA) 的质粒 DNA 的 BALB/c 小鼠在接种疫苗后可产生长达 3 个月的保护性免疫,这与疫苗 mRNA 在外周器官中的全身表达有关。在本研究中,LACK-DNA 疫苗与交联甘油醛 (CMC) 的生物相容性壳聚糖微粒相结合,以增强对晚期利什曼原虫攻击的持久免疫力。与未接种疫苗的对照组相比,接种疫苗后 7 天、3 或 6 个月感染导致寄生虫负荷显著降低。此外,接种 LACK-DNA-壳聚糖疫苗的小鼠在晚期时间点攻击后表现出长期保护作用。所获得的保护与脾细胞对寄生虫抗原的增强反应相关,其特点是增殖和 IFN-g 增加以及 IL-10 产生减少。此外,我们发现 TNF-a 的系统水平降低,这与 LACK-DNA/CMC 疫苗接种感染小鼠中观察到的较好健康状况相一致。总之,我们的数据表明壳聚糖微粒作为递送系统工具来延长 LACK-DNA 疫苗赋予的保护性免疫的可行性,这可以在针对利什曼原虫感染的疫苗制剂中进行探索。
在本文中,描述了快速,容易且廉价的声学方法用于合成Florfenicol-Chitosan纳米复合材料,并评估其针对大肠杆菌(ATCC35218)的抗细菌作用,Salmonella Typhymurium Typhymurium(ATCC14028)和葡萄球菌。金黄色(ATCC29213)。Florfenicol-Chitosan纳米复合材料的索引,识别和形态特性充分表征。ZETA对Florfenicol -Chitosan纳米复合材料的潜力的结果为-28 mV。Brunner-Emmett-Teller理论(BET)表面积分别为13.3、73.2和103.69 m 2 /g,对于Florfenicol,壳聚糖纳米颗粒和Florfenicol-Chitosan纳米复合材料。拉曼图表证实了佛罗里芬酸 - 壳聚糖纳米复合材料的形成而没有任何污染。透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)图像和数据示出了球形的球形至佛罗里芬酸纳米粒子的亚球形,尺寸小于75 nm。florfenicol-Chitosan纳米复合材料作为抗细菌剂的显着结果说明了纳米技术的能力。然而,筛选抗菌活性,而由制备的纳米复合材料引起的抑制区为24.7 mm,30.6毫米和29.3毫米,而对大肠杆菌的天然药物的17.7 mm,16 mm,16 mm和18.7毫米,相对于大肠杆菌,Salmonella typhymurium typhymurium typhymurium和葡萄球菌和葡萄球菌aureus aureus aureus aureus aureus aureus aureus。关键字:florfenicol;壳聚糖纳米颗粒; Florfenicol-Chitosan纳米复合材料;抗菌活性;微观技术。
过去,使用了各种方法来治愈皮肤伤口,其中许多方法没有有利的结果。用基于水凝胶化合物的敷料代替旧方法已导致伤口愈合的质量和速度提高。已知水凝胶在改善气体交换和氧气供应中的作用以及伤口分泌物的吸收和温度调节以及伤口上传染剂的降低。在这项研究中,我们试图引入有效治愈皮肤伤口的最重要的水凝胶基团。调查结果表明,这些化合物包括具有天然碱(纤维素,淀粉,几丁质,壳聚糖,角叉菜胶,藻酸盐,葡萄糖,葡萄糖,葡萄糖,pullulan等)的聚合物水凝胶。),用物理碱产生的水凝胶。和化学(共聚物,均聚物等)),与自然和合成碱(与壳聚糖,胶原蛋白和葡萄糖起源的复合物相结合),具有聚乙烯醇等化合物等)和高级水凝胶(自愈合,喷涂,智能等)
同行评审期刊中的出版物:(总论文是1073,h-index为18,而i10-Index是22))in 08-12-202343。绿色合成的COFE 2 O 4纳米颗粒,用于使用可见光暴露R. Kavitha,K。KrishnaVeni,S。Agalya,Suresh Sagadevan,L.C。评估光催化研究。Nehru Ceramics International(审查)(影响因素5.2)42。增强了壳聚糖的光催化和超声催化性降解3纳米复合材料,用于对新兴污染物的环境修复K. Krishna veni,R。Kavitha的环境修复,是Fatimah,是Fatimah,Suresh Sagadevan,L。C. Nehru nehru Inhru inhru Intheric Intaric Chemensigation Communications 158(3.8)158(2023)。氧化铜和氧化镍纳米颗粒对抗菌活性的废水回收和评估S. agalya,K。KrishnaVeni,R。Kavitha,Suresh Sagadevan,L.C。nehru无机化学通信(审查)40。综合和制造HAP从鱼秤废物中形成骨骼等效的P. Venkatraman,Rajisha Rajan,C.S。Sureka,L.C。 Nehru核和粒子物理学会议论文集336-338(2023)54-61(影响因子0.42)39。 壳聚糖/锡氧化物纳米复合材料的有效光催化活性用于环境修复Sureka,L.C。Nehru核和粒子物理学会议论文集336-338(2023)54-61(影响因子0.42)39。壳聚糖/锡氧化物纳米复合材料的有效光催化活性用于环境修复
摘要 幽门螺杆菌是大多数胃溃疡的病因,也是一些消化系统癌症的病因。幽门螺杆菌抗生素耐药菌株的出现和传播是治疗其感染的最重要挑战之一。本研究旨在开发一种基于刀豆球蛋白 A (ConA) 包覆的壳聚糖 (CS) 纳米载体的药物递送系统,用于将肽靶向释放到幽门螺杆菌感染部位。因此,以壳聚糖为包封剂,采用离子凝胶化法递送 CM11 肽。Con-A 用于涂覆 CS 纳米粒子以靶向幽门螺杆菌。通过 FTIR、动态光散射 (DLS) 和扫描电子显微镜 (SEM) 表征了 CS NPs 和 ConA-CS NPs。体外分析了 CM11 负载的 ConA-CS NPs 对幽门螺杆菌 SS1 菌株的 MIC。为了评估体内治疗效果,在小鼠中建立了H. pylori SS1菌株的胃部感染模型,并进行了组织病理学研究和IL-1β细胞因子测定。根据结果,CS NPs和ConA-CS NPs的尺寸频率分别约为200和350 nm。制备的CM11负载ConA-CS NPs对浓度为32 µg/ml的H. pylori SS1菌株表现出抗菌活性。在合成的CM11负载ConA-CS NPs治疗中观察到最高的愈合过程,并且观察到IL-1β显着降低。我们的研究结果突出了壳聚糖纳米粒子作为药物递送载体在治疗H. pylori SS1菌株胃部感染模型中的潜力。
目的:这项研究的目的是开发抗炎剂槲皮素(QU)的结肠靶向纳米关节系统,并评估各种参数的公式,这些系统可以通过更好的药物和治疗性能在预定的时间和位置释放活性成分。材料和方法:使用中央复合材料设计使用离子胶化方法为此目的制定了槲皮素负载的壳聚糖纳米颗粒。在优化的槲皮素装载壳聚糖纳米颗粒(QLCN)的配方中涂上Eudragit S 100(ES 100),使用了油溶剂蒸发过程中的油。粒径(PS),多分散性指数(PDI),扫描电子显微镜(SEM)和药物释放(%DR)以表征纳米颗粒。结果:槲皮素加载的壳聚糖纳米颗粒的平均PS 114.2±1.42 nm和多分散指数0.396±0.02,而Eudragit涂层纳米颗粒显示PS 330.2±0.40 nm和Polydispersity Index 0.412 0.412±0.412±0.02。使用SEM证实制备的纳米颗粒的表面形态。根据对纳米结构制剂的体外药物释放分析,QLCN上的ES 100涂层抑制了胃肠道上层系统中槲皮素的释放,表现出良好的结肠药物靶向。结论:根据纳米颗粒制剂的体外释放研究,QLCN上的ES 100涂层限制了槲皮素在上层胃肠道系统中的释放,显示有效的结肠药物靶向。