氧化物聚酰胺纳米过滤膜,用于含有单价盐的染料溶液的脱盐,膜科学杂志。539(2017)128–137。 https://doi.org/10.1016/j.memsci.2017.05.075。 [3] M.E.A. ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯539(2017)128–137。https://doi.org/10.1016/j.memsci.2017.05.075。 [3] M.E.A. ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯https://doi.org/10.1016/j.memsci.2017.05.075。[3] M.E.A.ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯
摘要:Macca Carbon(MC)粉末是一种源自澳洲坚果培养的生物质,它通过熔融和随后的熔融融化操作融合到低密度聚乙烯(LDPE)中。光学显微镜,扫描电子显微镜,差异扫描量热法,机械性能,机械性能,FIR发射功率,屏障特性,传输特性,抗菌活性测定和储存测试用于评估制造的LDPE/MC Composite -Composite -Composite -Composite -Composite -Composite Biosebosite blimicicalessseys antymicicales andimicimicial sepplications。复合膜的物理特性和抗菌活性与所使用的MC粉末量显着相关。LDPE/MC复合纤维中的MC粉末含量越高,FIR排放能力越好。仅按重量为0.5%的MC粉末显示出足够的基本效果特征,抗菌活性和储存性能,使生菜和草莓分别保持新鲜7天以上,在冰箱之外。这项研究表明,由MC粉制成的FIR复合材料是一种独特而潜在的包装材料,用于将来在食品行业中应用。
高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
B物理系,乔夫大学科学学院框:2014年,沙特阿拉伯萨卡卡州,c p粒子实验室,辐射物理部,国家辐射研究与技术中心(NCRRT),埃及原子能局(EAEA),埃及,埃及,埃及成功制备了柔性ppy/cuo nanocomposite,由polypyrole(ppy)组成的柔性PPY/CUO NANOCompose(PPY)(PPY)(PPY)(PPY)(ppy)。PPY和PPY/CUO的结构分析是由EDX,SEM,TEM和FTIR技术进行的,该技术提供了PPY/CUO纳米复合膜的成功捏造。theppy/cuO纳米复合材料的EDX分析揭示了与C,Cu,N和O元素相对应的特征峰,重量百分比分别为47.46%,9.05%,19.08%和24.41%。获得的结果提供了证实,PPY/CUO纳米复合膜不会表现出任何杂质成分的存在。FTIR注意到,PPY光谱的所有峰值也显示在PPY/CUO纳米复合膜的光谱中,峰值略有变化,其中这些变化随着CuO纳米颗粒内容的增加而增加。这项研究的发现表明PPY/CUO之间存在相互作用。此外,还采用了SEM来阐明(PPY)和PPY/CUO的形态。SEM证明氧化铜(CUO)均匀分布在纳米复合膜中。使用Tauc的关系,PPY和PPY/CUO膜的带隙和Urbach Energy。被确定。同时,CUO的存在导致PPY的带隙从3.42 eV减少到3.35 eV,3.32 eV和3.30 eV。将不同浓度(2.5%,5%和10%)添加到PPY中增加了PPY的URBACH尾巴,从而相应地导致能量值1.08 eV,1.11 eV和1.13 eV。因此,将CuO掺入PPY/CUO复合膜中诱导结构和光学修饰,从而使这些膜适合于光电设备中的利用。(2023年10月31日收到; 2024年1月19日接受)关键字:纳米复合膜,带盖,灭绝系数,光电系数1。简介聚合物纳米复合材料提供了许多功能,使它们具有很高的吸引力,适合多种用途[1,2]。将纳米颗粒整合到聚合物基质中会导致材料的增强,从而改善了其机械性能,例如刚度和韧性[3,4]。因此,将纳米颗粒掺入复合材料会导致抗冲击力增强,断裂韧性和抗疲劳性。因此,纳米复合材料对需要出色强度和持久性能的结构应用具有有利的特征[5,6]。聚合物纳米复合材料的机械,热,电和表面特性增加,有助于其各种特征和应用范围[7,8]。这些技术用于多个行业,例如汽车,航空航天,电子和纺织品[9]。
高性能NF层状结构化的Go-amphipHilic聚合物纳米复合膜通过合成的聚合物控制层间间距,以增强水的渗透性和精确的水处理溶质抑制
人类和动物研究证明了心血管和神经血管健康的有氧运动的机制和好处。有氧运动诱导脑网络的神经塑性和神经生理重组,改善脑血流,并增加全身VO2峰(峰值消耗量)。结构化心脏康复(CR)计划的有效性已建立得很好,对于患有心血管疾病的人来说,这是护理连续性的重要组成部分。中风后的个体表现出降低的心血管能力,这会影响其神经系统恢复并扩大残疾。中风幸存者与心脏病患者具有相同的危险因素,因此除了神经康复外,还可以从全面的CR计划中受益匪浅,以解决其心血管健康。将中风的个体纳入CR计划,具有适当的适应能力,可以显着改善其心血管健康,促进功能恢复,并减少未来的心血管和脑血管事件,从而减轻中风的经济负担。
摘要:金属 - 有机框架(MOF)UIO-66(OSLO-66大学)的超矩形4至6 nm纳米颗粒成功地制备并嵌入到聚合物Pebax 1657中,以制造薄膜纳米纳米含量(TFN)的薄膜(TFN)MEMBRANES,用于CO 2 /N 2 /CO 2 /CO 2 /CH 4分隔。此外,已经证明了使用氨基(-NH 2)和硝基( - 2号)组的配体功能化显着增强了膜的气体分离性能。对于CO 2 /N 2分离,7.5 wt%UIO-66-NH 2纳米颗粒的CO 2渗透率比原始膜(从181到277 GPU)提高了53%。关于CO 2 /N 2的选择性,用5 wt%UIO-66-NO 2纳米颗粒制备的膜在没有MOF的情况下以17%的增量增量(从43.5到51.0)。但是,该膜的CO 2渗透率降至155 GPU。在5 wt%UIO-66-NO 2膜中添加10 wt%ZIF-94颗粒,平均粒径约为45 nm,允许将CO 2固定膜增加到192 GPU,同时保持CA的CO 2 /N 2选择性。51由于MOF与ZIF-94的亲水性性质提供的聚合物基质之间的协同相互作用引起的。在CO 2 /CH 4分离的情况下,7.5 wt%UIO-66-NH 2膜表现出最佳性能,CO 2 Pereance从201增加到245 GPU。关键字:金属 - 有机框架(MOF),Ultrasmall MOF,UIO-66,薄膜纳米复合材料(TFN)膜,气体分离
摘要本文介绍了一种使用高压电纺丝方法制备P(VDF-TRFE)/ZnO/Graphene的柔性复合压电纳米膜的方法。组成和β相含量。通过扫描电子显微镜观察了复合膜纤维的形态。最后,将P(VDF-TRFE)/ZnO/石墨烯复合膜封装在三明治结构心脏声音传感器中,并使用Labview设计了视觉心脏声音的获取和分类系统。基于最细的邻居分类算法对心脏声音分类模型进行了训练,以预测收集的心脏声音是正常还是异常。本文设计的心脏声音检测系统可以实时收集心脏声音信号,并预测心脏声音是正常还是异常,为诊断心脏病的诊断提供了新的解决方案。
nbslcnls Poly(vinylidene fluoride)/Cu@Ni Anchored Reduced-Graphene Oxide Composite Films with Folding Movement to Boost Microwave Absorption Properties Biao Zhao, 1, 2,# Luyang Liang, 3,# Zhongyi Bai, 1 Xiaoqin Guo, 1 Rui Zhang, 1, 3 Qinglong Jiang 4,* and Zhanhu Guo 5,*摘要详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了聚(vinylidene氟化物)/rgo/cu@ni复合膜的氧化石墨烯(RGO)/cu@ni加载和可折叠结构的影响。PVDF/RGO/CU@Ni复合膜的微波吸收特性随RGO/CU@ni含量增加而增加,然后降低,这是由于阻抗匹配的变化所致。此外,发现可折叠结构在可调和强大的微波吸收中起决定性作用。对于可折叠的PVDF/20 wt%rgo/cu@ni,厚度为2.5毫米,可以获得-49.1 dB的最小反射损失,并且带宽(低于-20 dB,99%的耗散)可以达到6.4 GHz(18.5-19.3 ghz,20.7-26.7-26.5 ghz)。
摘要:金属 - 有机框架(MOF)UIO-66(OSLO-66大学)的超矩形4至6 nm纳米颗粒成功地制备并嵌入到聚合物Pebax 1657中,以制造薄膜纳米纳米含量(TFN)的薄膜(TFN)MEMBRANES,用于CO 2 /N 2 /CO 2 /CO 2 /CH 4分隔。此外,已经证明了使用氨基(-NH 2)和硝基( - 2号)组的配体功能化显着增强了膜的气体分离性能。对于CO 2 /N 2分离,7.5 wt%UIO-66-NH 2纳米颗粒的CO 2渗透率比原始膜(从181到277 GPU)提高了53%。关于CO 2 /N 2的选择性,用5 wt%UIO-66-NO 2纳米颗粒制备的膜在没有MOF的情况下以17%的增量增量(从43.5到51.0)。但是,该膜的CO 2渗透率降至155 GPU。在5 wt%UIO-66-NO 2膜中添加10 wt%ZIF-94颗粒,平均粒径约为45 nm,允许将CO 2固定膜增加到192 GPU,同时保持CA的CO 2 /N 2选择性。51由于MOF与ZIF-94的亲水性性质提供的聚合物基质之间的协同相互作用引起的。在CO 2 /CH 4分离的情况下,7.5 wt%UIO-66-NH 2膜表现出最佳性能,CO 2 Pereance从201增加到245 GPU。关键字:金属 - 有机框架(MOF),Ultrasmall MOF,UIO-66,薄膜纳米复合材料(TFN)膜,气体分离