筛查,早期诊断和治疗方面的进步对总体癌症致命率3的下降有重大影响。然而,在改善癌症患者4的结果方面,对治疗的耐药性仍然是最大的挑战。在1942年由耶鲁大学药物老兄会和医生5 - 7的多学科团队做出多种药物后,可以发展出癌症对化学疗法的概念证明,他们对患者进行静脉内的氮芥末术治疗淋巴瘤8。这项临床试验揭示了所谓的获得的耐药性。进一步的研究表明,只有一些癌症对治疗作出反应,从而揭示了内在的抗药性。大约35年后,Ling及其同事证明了一种被指定为透化性糖蛋白的细胞表面糖蛋白的作用,在中国仓鼠卵巢细胞对秋水仙碱9、10中的耐药性。作者表明,这些细胞还耐有结构和机械无关的药物,该药物被定义为多药耐药9、10。克隆了编码该渗透性 - 糖蛋白11的ABCB1基因11。这是膜蛋白的大型超家族的第一个成员,其中包括48个MEM啤酒分为7个家庭,称为ATP结合盒(ABC)转运蛋白12。自ABCB1以来,许多其他ABC运输ER与耐药性13有关。这些抑制剂的毒性仍然是一个主要问题,其中包括在某些第13-15条中解决的问题。不幸的是,大多数临床试验未能支持这些药物外排转运蛋白作为克服ABC转运蛋白介导的耐药性14的治疗策略。癌症对化学疗法反应的表征已导致鉴定出许多其他耐药性机制,这是由于摄取转运蛋白的表达降低,表观遗传改变,药物隔离和增强的DNA损伤修复4。
有效的蜂窝通信对于大脑调节肌肉收缩,记忆形成和回忆,决策和任务执行等多种功能至关重要。通过电气和化学信使(包括电压门控通道和神经递质)的快速信号传导来促进这种通信。这些使者通过传播动作电位和中介突触传播来引起广泛的反应。钙涌入和外排对于释放神经递质和调节突触传播至关重要。与氧化磷酸化有关的线粒体和能量产生过程也与内质网相互作用,以存储和调节细胞质钙水平。不同细胞类型中线粒体的数量,形态和分布根据能量需求而变化。线粒体损伤会导致过量的活性氧(ROS)产生。mitophagy是一个选择性过程,它通过自噬体 - 散糖体融合靶向并降解损坏的线粒体。线粒体中的缺陷会导致ROS和细胞死亡的积累。许多研究试图表征神经退行性疾病中线粒体功能障碍与钙失调之间的关系,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,黑肿瘤疾病,肌萎缩性侧面硬化症,脊髓灰质球脑性脑脑性无动脉症,染色。减少线粒体损伤和积累的介入策略可以作为治疗目标,但是需要进一步的研究来揭示这一潜力。本综述提供了与线粒体在各种神经元细胞中有关的钙信号传导的概述。它严格检查了最新发现,探讨了线粒体功能障碍可能在多种神经退行性疾病和衰老中起的潜在作用。此外,评论还确定了知识中现有的差距,以指导未来研究的方向。
葡萄糖是哺乳动物细胞的关键代谢底物。血糖是糖原和脂肪生物合成以及各种含糖的大分子的前体,例如糖蛋白,糖脂和核酸。一些组织(例如大脑)需要葡萄糖作为能源和其他组织(例如肌肉)优先将葡萄糖分解为ATP的产生。血糖代谢的第一步是跨质膜的转运。此步骤是由称为葡萄糖转运蛋白的一系列膜载体蛋白(1,2)进行的。令人惊讶的是,不同的蛋白质家族负责葡萄糖在极化肠和肾上皮细胞的顶端膜中转移。这些钠 - 葡萄糖共转运蛋白是次要激活。:似乎与促进性葡萄糖转运蛋白无关的转移系统。由于葡萄糖在细胞代谢中所起的核心作用,几乎所有哺乳动物细胞中都存在一个或多个葡萄糖转运蛋白。在大多数细胞类型中,葡萄糖转运蛋白仅参与血糖的净摄取以用于细胞代谢。然而,在某些组织中,葡萄糖转运蛋白可能会参与细胞葡萄糖的净外排。例如,此过程发生在葡萄糖跨肠道或肾上皮的吸收或重吸收期间,在basolat-eary1膜中存在可容纳的葡萄糖转运蛋白,并使糖的被动通量降低其浓度梯度进入血液中。此外,在禁食过程中,转运蛋白参与了肝脏或肾脏细胞的细胞葡萄糖的净出口。葡萄糖转运蛋白参与了升高和降低血糖水平,因此非常适合参与葡萄糖稳态的调节。本综述将重点介绍有关几种关键哺乳动物组织中葡萄糖转运蛋白的最新进展。首先,我们简要描述了葡萄糖转运蛋白亚型的某些物理特性。
抗菌耐药性(AMR)对全球健康构成了重大威胁。它使治疗细菌感染越来越困难。amr源自抗生素耐药性的各种机制,包括酶活性,靶位改变,外排泵和渗透性降低。依赖抗生素及其组合的有限且经常无效的治疗方法导致发病率和死亡率增加。因此,探索替代AMR挑战的替代方法至关重要。近年来,在与AMR的战斗中,人们向精确医学有了显着的转变。精确药物的特点是它专注于针对患者特定基因组成的个性化治疗,在应对AMR挑战方面提供了范式转移。通过查明负责感染的分子靶标,精密医学可以实现更多有针对性和有效的疗法,从而最大程度地减少了抗菌耐药性发展的风险。精密药物可以通过关注负责感染的靶标来提供对抗AMR的替代选择。噬菌体和抗菌肽(AMP)是抗菌剂组,可以作为抗生素的新型替代品来打击全球抗生素耐药性挑战。它们有可能用作靶向治疗。尽管诸如有限的宿主范围之类的挑战是指它们可以感染的特定细菌以及与其批准和使用有关的监管问题,但事实证明,噬菌体已被证明有效地抵抗了引起感染的细菌。同时,由于其低分子量和广谱抗菌活性,AMPS针对抗生素耐药细菌提供了潜在的治疗方法。放大器可以作为针对微生物的第一道防线。单独使用或与其他生物材料相结合以增加治疗作用时,它们可以作为对微生物的第一道防御。本评论的文章旨在全面概述噬菌体和AMP的当前理解和临床潜力,作为解决AMR紧迫挑战的常规抗生素的替代方法。
ALDH1A、Oct4 和 Nanog 等癌症干细胞标志物的表达可诱导癌细胞干性、增加转移并抑制癌细胞凋亡 (4)。此外,癌细胞的耐药性也是 CRC 治疗失败的原因。耐药性限制了化疗效果,并与 DNA 修复过程的改善和药物外排泵机制有关 (5, 6)。最近的研究表明,分子靶向疗法可能是治疗 CRC 的有效方法 (7-9)。因此,发现新的靶点和开发新的治疗方法对于 CRC 的治疗至关重要。细胞朊病毒蛋白 (PrP C ) 是一种糖基磷脂酰肌醇锚定蛋白,在神经和其他组织中表达,调节多种细胞过程,如细胞死亡、存活、增殖和分化 (10, 11)。 PrP C 的错误折叠与神经退行性疾病有关,例如传染性海绵状脑病和朊病毒病(12)。越来越多的证据表明,PrP C 对多种癌症中癌细胞的增殖、转移和耐药性等功能有显著影响(13,14)。最近的一项研究表明,缺氧会增加 PrP C 的表达,而 PrP C 则会调节 CRC 细胞中的癌症干细胞标志物(15)。在胃癌患者中,PrP C 的表达与癌细胞侵袭和淋巴结转移之间的相关性也已被证实(16)。此外,PrP C /P-糖蛋白 (P-gp) 复合物的形成也会增加乳腺癌细胞对紫杉醇的耐药性(17)。虽然目前已有许多关于朊病毒对癌细胞增殖、转移及耐药性影响的研究,但关于PrP C对CRC细胞中癌症干细胞标志物表达、迁移、侵袭及耐药性影响的研究尚不足。本研究主要探讨PrP C对肿瘤干细胞特性(如肿瘤球形成、癌症干细胞标志物表达)的影响,以及朊病毒蛋白对CRC细胞迁移、侵袭及耐药性的影响。
摘要背景:小儿弥漫性内在的庞然神经胶质瘤(DIPG)代表了中位生存期为12个月的儿童中最具破坏性和致命的脑肿瘤之一。高死亡率可以通过患者对手术切除的无能为力来解释,这是由于肿瘤的扩散生长模式和中线定位。不幸的是,虽然治疗策略具有姑息性,但怀疑血脑屏障(BBB)对治疗效率低下负责。位于脑毛细血管内皮细胞(EC),BBB具有特定的特性,可以严格控制和限制分子进入脑实质,包括化学治疗量。但是,这些BBB特异性特性可以在病理环境中进行修饰,从而调节大脑暴露于治疗药物中。因此,这项研究旨在开发一种合成性人体脑肿瘤屏障模型,以了解DIPG的存在如何影响脑毛细血管EC的结构和功能。方法:一种由人类(ECS)(ECS)(与CD34 +茎细胞区分开),周细胞和星形胶质细胞组成的人类合成性BBB模型。曾经通过BBB表型验证,该模型可以通过通过DIPG -007,-013和-014细胞代替针对儿科DIPG的血脑肿瘤屏障(BBTB)模型。分析了BBTB EC的物理和代谢特性,并将其与BBB ECS进行了比较。评估了两种模型对化学化合物的渗透性。结果:根据临床观察,BBTB EC的完整性一直保持完整,直到孵育7天。dipg的存在并未强烈改变外排转运蛋白的转录表达和活性。EC对化学治疗药物的渗透性不受DIPG环境的影响。结论:这种原始的人类BBTB模型可以更好地理解DIPG对BBTB ECS表型的影响。我们的数据表明,针对DIPG所述的化学抗性不是来自“ Super BBB”的发展。这些结果,通过缺乏通过BBTB EC的药物转运的修饰来验证,点
在土壤中存在多种细菌,但是在根际地区,大多数微生物有助于植物捍卫疾病并促进营养吸收。这些微生物得到了植物的支持,它们被称为植物生长 - 促进根瘤菌(PGPR)。PGPR有可能以对环境更有利的方式替代化学肥料。氟化物(F)是高度上升的,自然存在的污染物之一,由于其抗菌能力而可能对PGPR造成危害。F与地下水系统中不同细菌物种的相互作用尚不清楚。然而,PGPR与根际区域中植物的相互作用减少了污染物的有害作用,并增加了植物忍受非生物应激的能力。许多研究表明,PGPR已开发出F防御机制,其中包括外排泵,细胞内的隔离,酶修饰,增强的DNA修复机制,排毒酶,离子转运蛋白/抗胞蛋白,F核糖开关和遗传突变。这些耐药性特征经常是通过从高F污染区域分离PGPR或在实验室条件下将细胞暴露于氟化物中发现的。众多研究已经确定了F-F Transorters和F.植物的众所周知靶标的其他F转运蛋白和重复的F.植物易于F。pgprs可以用作土壤环境的有效f生物化体。环境生物技术专注于创建遗传修饰的根瘤菌,可以随着时间的流逝而降解F污染物。本综述着重于对当代生物技术技术(例如基因编辑和操纵方法)进行全面分析,用于改善植物 - 微生物相互作用以进行F修复,并表明PGPR在改善土壤健康和降低F毒性的有害影响方面的重要性。还强调了微生物援助领域的最新发展,在治疗F污染环境中也得到了强调。
抗癌药物的最新进展极大地提高了癌症患者的生存率 [ 1 , 2 ]。例如,在 1995 年至 2014 年间,在 19 个司法管辖区内,3,764,543 例符合条件的癌症病例中,涵盖大多数癌症类型的 1 年和 5 年净生存率都有所增加 [ 1 ]。高收入国家的生存率明显提高。患有原发性癌症的青少年和青年人的 5 年死亡率从 1975 年至 1984 年间确诊的 6.8% 下降到 2005 年至 2011 年间的 4.2% [ 2 ]。这些改进主要得益于靶向疗法的开发。例如,截至 2022 年 5 月 29 日,美国食品药品监督管理局 (FDA) 已批准 71 种小分子蛋白激酶抑制剂 (PKI) [ 3 ]。过去 35 年中,美国 FDA 批准了 100 种单克隆抗体用于治疗包括癌症在内的各种疾病 [4]。嵌合抗原受体 (CAR) 工程细胞疗法和抗体-药物偶联物 (ADC) 等新型治疗方式也为抗癌治疗的整体成功做出了贡献 [5-9]。然而,耐药性的出现阻碍了这些抗癌疗法的疗效,并对癌症的成功治疗提出了另一个挑战 [10]。耐药性分为两种类型:内在性(从头或原发性),即在使用药物之前就存在的耐药性;以及获得性(或继发性),即在药物治疗过程中产生的耐药性 [8,11]。耐药性通过多种机制发生,包括药物外排增加、致癌基因和/或肿瘤抑制基因突变、补偿性生存途径激活以及 DNA 损伤修复 [10,12]。三阴性乳腺癌 (TNBC) 具有侵袭性,占乳腺癌类型的 20% [13-17]。TNBC 的特点是缺乏激素受体(雌激素 (ER) 和孕激素 (PR) 受体)的表达,也没有人类表皮生长因子受体 2 (HER2) 的扩增,导致其在靶向治疗中的应用受到限制 [11、13、14、18]。具体而言,TNBC 对针对酪氨酸激酶受体的治疗具有内在耐药性,例如表皮生长因子受体 (EGFR) 和
背景与目的:化疗在白血病治疗中起着重要作用。化疗引起的多药耐药性 (MDR) 往往导致治疗失败和疾病复发。微小 RNA (miRNA) 已被证实是致癌作用的关键组成部分,包括肿瘤细胞的化学耐药性,但这一点尚未完全了解。在本研究中,我们旨在确定潜在的候选 miRNA miR-1246,并揭示其在白血病细胞化学耐药中的调控作用。方法:通过微阵列分析选择候选 miRNA,通过生物信息学工具筛选并通过逆转录定量聚合酶链反应 (RT-qPCR) 进行验证。检测转染 miR-1246 类似物或抑制剂后白血病细胞的化疗耐药表型,包括细胞存活率、凋亡、阿霉素 (ADM) 外排和体内致癌性,并检测是否接受 ADM 处理,以明确 miR-1246 与化疗耐药之间的关系。通过 RT-qPCR、Western blot 和双荧光素酶报告基因检测,检测相关基因的表达,探讨 miR-1246 在化疗耐药中的潜在调控机制。结果:miR-1246 在化疗耐药的白血病 K562/ADM 细胞、HL-60/RS 细胞和复发性原发性白血病细胞中的表达显著增高。 miR-1246的缺失抑制了化疗耐药白血病细胞的增殖、诱导了细胞凋亡、改变了细胞周期分布、抑制了ADM的流出,而miR-1246的过表达在化疗敏感白血病细胞中则表现出相反的作用。生物信息学预测和荧光素酶检测均表明AXIN2和糖原合酶激酶3β(GSK-3β)是白血病细胞中miR-1246的直接作用靶点。抑制miR-1246可以上调AXIN2和GSK-3β并使Wnt /β-catenin通路失活,同时抑制β-catenin的表达,并进一步影响化疗耐药白血病细胞中P糖蛋白(P-gp)的表达。结论: miR-1246 的缺失通过负向调控 AXIN2 和 GSK-3 β,使 Wnt/β-catenin 通路失活并抑制 P-gp 表达,从而减弱了 MDR 白血病细胞的化疗耐药能力,这意味着靶向 miR-1246-AXIN2/GSK-3β-Wnt/β-catenin 轴可能有利于克服复发和难治性白血病患者的化疗耐药性。
乳腺癌是女性癌症死亡的主要原因 [1]。调节肿瘤发生和发展的分子机制的复杂性决定了乳腺癌的异质性。在分子水平上,这种多样性对治疗方案的选择和疾病预后提出了挑战 [2]。分子研究的进展使我们对控制乳腺肿瘤发展的细胞通路有了更深入的了解,促进了诊断标记物的识别和新治疗策略的开发,其中一些治疗策略将在本期特刊中介绍。具有相似预后变量的乳腺癌患者的治疗结果存在多样性,这要求进一步识别新的预后标记物,以改善临床预后 [3]。转录因子被认为是预后和预测价值的重要标记;由于它们是肿瘤发展和进展的驱动因素,因此它们成为有价值的预后和治疗靶点 [4]。Ogura 等人[ 5 ] 将转录因子八聚体转录因子 1(OCT1)确定为雌激素受体阳性乳腺癌的新型预后因子。OCT1 调节参与细胞增殖和转移等过程的基因表达。发现阳性 OCT1 免疫反应性(IR)是 ER 阳性乳腺癌的不良预后因素。已发现 OCT1 靶基因 NCAPH 与 OCT1 IR 呈正相关,也与不良预后有关。OCT1 和 NCAPH 促进乳腺癌细胞和长期雌激素缺乏(LTED)细胞的增殖,表明它们在雌激素抵抗中的作用,并不仅指出它们对 ER 阳性乳腺癌的预后价值,而且还指出它们对 ER 阳性乳腺癌的治疗价值 [ 5 ]。乳腺癌中另一个起到共转录因子作用的分子靶点是核 EGFR(nEGFR)。 EGFR信号在质膜上发挥作用,并调节细胞核中与肿瘤进展有关的基因。nEGFR介导三阴性乳腺癌 (TNBC) 对抗 EGFR 药物(如西妥昔单抗)的耐药性[6]。研究发现,抗疟药伯氨喹可通过诱导内吞介导的 EGFR 降解来抑制 TNBC 中 EGFR 的核易位。nEGFR与 DNA 结合转录因子 STAT3 相互作用,激活细胞核中与细胞周期进展和细胞凋亡有关的基因转录。伯氨喹抑制 Stat3/nEGFR 相互作用并通过下调 c-Myc 诱导细胞凋亡,为通过靶向 nEGFR 信号治疗 TNBC 提供了治疗策略[7]。提高目前用于治疗乳腺癌的药物疗效的一个重要方面是阐明导致耐药性的机制。耐药性是一个多因素、多步骤的过程,分子研究的进展已确定了多种相关机制,包括药物代谢酶活性、药物外排和谷胱甘肽解毒系统。药物靶标的变化、DNA损伤修复机制和凋亡相关因子的过度表达也有助于产生耐药性。癌细胞对药物的反应不仅与内在机制有关,还依赖于从肿瘤微环境获得的信号,在肿瘤进展和治疗反应中起重要作用,介导耐药性。上皮-间质转化(EMT)与